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DANUTA SZELIGA

Identification problems in metal forming.

A comprehensive study

Summary

The work presents an identification problem of the parameters of models applied
in the numerical simulation of metal forming processes. The main thesis of the work
is a supposition that it is possible to obtain optimal solutions to ill-posed inverse prob-
lems of identification with the application of sensitivity analysis methods combined
with optimization procedures. The objectives defined and executed in the work,
as well as the application of the developed methods to solve practical identifica-
tion problems of metal forming, prove the work thesis. Identification problems
are inverse problems transformed into optimization tasks for which a minimum
is searched. These problems are ill-posed, thus, the main objective of the work was
to develop a method based on the sensitivity analysis algorithms coupled with opti-
mization procedures which would constitute a robust tool to solve inverse problems
and which would allow to obtain solutions close to the exact ones.

The application of sensitivity algorithms to decrease computational costs of identifi-
cation is presented. The application was the next objective of the work. The methods
of reducing the space dimension of decision variables dedicated to the identification
of parameters of the highest importance, based on sensitivity analysis algorithms,
are provided in the work. This problem is particularly important for numerical mod-
els of metal forming, which are computationally expensive due to non-stationary na-
ture of these problems and due to solvers of finite element method with hp-adaptation
to improve the quality of the solution. Another advantage of this application of sen-
sitivity analysis is the constraint of a possible number of solutions.

The application of sensitivity analysis as a preliminary step of optimization
to bound or extend the parameters domain, to generate starting points for optimiza-
tion or to investigate behavior of the functional defined in optimization is presented
in the work. Another provided application of sensitivity analysis is a hybrid opti-
mization procedure, such as a combination of nondeterministic optimization methods
and local sensitivity analysis algorithms for exploring local minima.
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The thesis was proved with the solution of practical problems presented in the work.
The following problems were solved: identification of mechanical boundary condition
(friction coefficient), identification of parameters of rheological models, identification
of fracture criteria parameters, identification of parameters of multiscale models, pa-
rameters of the phase transformation model and identification of production cycle
control parameters. All the listed problems were solved with the developed software
and they are presented in the monograph.

The presentation starts with the state of the art of identification problems investi-
gated in metal forming. The identification achievements are summarized and weak-
nesses of theoretical research are pointed out. The conclusions from this part were
basis to formulate the thesis of the work. Next general equilibrium equations used
in the modeling of metal forming processes and the formulation of inverse problems
for these equations are provided. The mathematical background of inverse operators
and an attempt to apply mathematical formalism to construct the inverse operator
for metal forming equations is included. Then, a description of sensitivity analysis
methods and the ability to apply sensitivity analysis algorithms to inverse calculations
as a supporting tool is presented. The performed investigations allowed to develop
an algorithm dedicated to the parameters identification of models with the application
of sensitivity analysis methods described in the work. The algorithm was implemented
and all the calculations of identification problems presented in the work were com-
puted with the designed software. The monograph ends with conclusions which sum-
marize the work achievements and which prove the formulated thesis that it is possible
to effectively solve ill-posed identification problems of metal forming with the devel-
oped application of identification strategy algorithm, based on sensitivity analysis
methods coupled with optimization procedures.



DANUTA SZELIGA

Zagadnienie identyfikacji parametrów modeli procesów

przeróbki plastycznej w ujęciu kompletnym

Streszczenie

W pracy przedstawiono zagadnienie identyfikacji parametrów modeli wykorzysty-
wanych w modelowaniu procesów przeróbki plastycznej metali. Główną tezą pracy
jest stwierdzenie, że możliwe jest otrzymanie optymalnych rozwiązań dla źle uwarunk-
owanych problemów identyfikacji z wykorzystaniem metod analizy wrażliwości połąc-
zonych z procedurami optymalizacyjnymi. Tezę udowodniono realizując cele postaw-
ione w pracy oraz stosując opracowane metody do rozwiązania praktycznych za-
gadnień identyfikacji parametrów modeli procesów przeróbki plastycznej. Zagad-
nienia identyfikacji parametrów modeli są zadaniami odwrotnymi. Dla zadań tych
poszukuje się rozwiązań przekształcając problem odwrotny w zadanie optymaliza-
cji i poszukując jego minimum. Zadania te są źle uwarunkowane, dlatego podsta-
wowym celem pracy było opracowanie metody opartej na algorytmach analizy wrażli-
wości, które w połączeniu z procedurami optymalizacji stanowią wydajne narzędzie
do rozwiązywania zagadnień odwrotnych i pozwalają na otrzymywanie rozwiązań
wystarczająco bliskich rozwiązania dokładnego.

Praca zawiera również zastosowanie algorytmów analizy wrażliwości do obniżenia
kosztów obliczeniowych problemów identyfikacji, co było jej kolejnym celem. Przed-
stawiono metody redukcji wymiaru przestrzeni zmiennych decyzyjnych procesu opty-
malizacji wykorzystujące algorytmy analizy wrażliwości do identyfikacji parametrów
modeli mających największy wpływ na wyjście modelu. Zagadnienie to jest szczegól-
nie istotne dla problemów rozwiązywanych w przeróbce plastycznej jako zadań
kosztownych obliczeniowo, formułowanych jako różniczkowe zadania niestacjonarne
i rozwiązywanych z wykorzystaniem metody elementów skończonych, często z hp-
adaptacją dla otrzymania rozwiązań wystarczająco dokładnych. Dodatkowo zas-
tosowanie algorytmów analizy wrażliwości pozwoliło na zawężenie przedziałów zmi-
enności poszczególnych parametrów.

Ponadto w ramach pracy zaprezentowano i zastosowano algorytmy analizy wrażli-
wości jako wstępny krok optymalizacji dla ograniczenia bądź poszerzenia przestrzeni
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poszukiwań parametrów, do generowania punktu początkowego dla zadania opty-
malizacji oraz dla badania zachowania się funkcjonału w optymalizacji. W pracy
przedstawiono również wykorzystanie analizy wrażliwości w hybrydowych metodach
optymalizacji, takich jak kombinacja niedeterministyczynch metod optymalizacji z al-
gorytmami analizy wrażliwości dla przeszukiwania obszarów minimów lokalnych.

Teza pracy została udowodniona poprzez przedstawienie rozwiązań prakty-
cznych zagadnień identyfikacji modelowania problemów przeróbki plastycznej metali.
Rozwiązano następujące problemy: zadanie identyfikacji mechanicznych warunków
brzegowych (współczynnik tarcia), zadanie identyfikacji parametrów równań reolog-
icznych, zadanie identyfikacji parametrów kryterium pękania, zadanie identyfikacji
parametrów w modelu wieloskalowym, zadanie identyfikacji parametrów równań
opisujących przemiany fazowe oraz zadanie identyfikacji parametrów kontrolujących
cykl produkcyjny. Wszystkie wymienione zagadnienia zostały rozwiązane z wykorzys-
taniem opracowanego autorskiego oprogramowania.

W pierwszej części monografii przedstawiono aktualny stan zagadnień związanych
z problemami identyfikacji przeróbki plastycznej metali. Zostały wymienione
zarówno dotychczasowe osiągnięcia, jak i słabe strony rozwiązań z punktu widzenia
rozważań teoretycznych. Wnioski z tej części pozwoliły na sformułowanie tezy pracy.
Następnie zostały przedstawione różniczkowe równania równowagi, które stosowane
są w rozwiązywaniu zagadnień przeróbki plastycznej wraz ze sformułowaniem zadań
odwrotnych dla tych równań. Matematyczne podstawy operatorów odwrotnych
oraz próba zastosowania formalizmu matematycznego do konstrukcji operatora
odwrotnego dla zadań przeróbki plastycznej stanowiły tematykę dalszej części pracy.
W pracy przedstawiono algorytmy analizy wrażliwości jako narzędzia wspomaga-
jącego rozwiązywanie zadań identyfikacji (zadań odwrotnych). Przeprowadzone
badania pozwoliły na realizację głównego celu pracy, jakim było opracowanie algo-
rytmu strategii identyfikacji. Zaprojektowany algorytm został opisany oraz zaim-
plementowany, a wszystkie przedstawione w pracy obliczenia wykonano z jego uży-
ciem. Monografię kończą wnioski podsumowujące osiągnięcia, które udowodniają
sformułowaną w pracy tezę, że możliwe jest efektywne rozwiązywanie źle uwarunk-
owanych zadań identyfikacji przeróbki plastycznej metali z wykorzystaniem opracow-
anego w pracy algorytmu strategii identyfikacji łączącego metody analizy wrażliwości
i procedury optymalizacji.



The list of main symbols

In the identification procedure

α regularization parameter

D (K) domain of the mapping K

δ perturbation, δ > 0

dim X dimension of the X space

η̃2
i estimated correlation ratio of the xi parameter (the variance based

method)

K mapping between the Hilbert spaces: K : X → Y

µ̃ normalized mean (the Morris design procedure)

N number of the measurements/calculated points in the experiment

N (K) kernel of the mapping K

Φ functional of the optimization problem

R the set of real numbers

R (K) image (range) of the mapping K

Rα regularization strategy

S sensitivity matrix

Ŝ normalized sensitivity matrix

Si Sobol’ index for the xi parameter

σ̃ normalized standard deviation (the Morris design procedure)

w weighted coefficient

x vector of the identified quantities: inputs and/or parameters

X, Y Hilbert spaces

x, y elements of the Hilbert spaces, x ∈ X, y ∈ Y

x(i) vector x in the ith iteration

xi ith vector
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X⊥ orthogonal complement of X

x∗ solution of the optimization problem

xi ith component of the vector x

ξi elementary effect of the xi parameter (the Morris design procedure)

y vector of the model outputs

yδ measured/perturbed vector y

yi ith component of the vector y

In modeling of metal forming processes

d inner/outer diameter of the ring; diameter of the cylindrical sample

ε strain

ε̇ strain rate

ε̇εε tensor of the strain rate

ε̇i effective strain

F load calculated with the model

F̃ load measured in the experiment

h height of the sample

mc friction factor in the Tresca friction model

mc friction coefficient in the Chen-Kobayashi friction model

σσσ the Cauchy stress tensor

σi effective stress

σp flow stress

T̂ temperature, in oC

T temperature, in K

t time

τττ shear stress

u velocity vector

x material point coordinates
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1 State of the art in inverse analysis

of metal forming

Numerical modeling of metal forming processes is commonly used to aid the design
of new technologies, to design materials of new properties and to study in details
the phenomena occurring in the analyzed processes. The accuracy of modeling de-
pends, except proper, mathematical description of physical phenomena and an analyt-
ical or numerical solver, on correctly, in terms of quantity, defined boundary and initial
conditions and constitutive relations. In this work, the problem of determining both
constitutive relations and boundary or initial conditions is considered and the iden-
tification problem is equivalent to the estimation of parameters of these equations.

The problem of parameter estimation has been investigated by many researchers
and there are a lot of papers related to this subject area. In the chapter, an overview
of selected identification problems and methods of their solutions is provided. The in-
vestigations are grouped into the following classes:

• estimation of material properties,

• determination of thermal or mechanical initial/boundary conditions,

• initial shape finding,

• mix-problems.

Problems of the first two classes, which are directly related to the work subject area,
are discussed further in the chapter.

Estimation of material properties. Determination of plastic properties of the ma-
terial is performed based on the results of plastometric tests: compression (axisym-
metric or plane strain), tension or torsion. During the test, loads in the function
of displacements are measured and this data set is an input for the parameter esti-
mation. The experiments are carried out for various strain rates and temperatures,
according to the assumed function which defines the flow stress σp. The flow stress σp

is approximated with various functions of parameters gathered in vector x, designed
in an empirical way. The basic function of the flow stress σp is the relation of strain
ε and strain rate ε̇:

σp = f (ε, ε̇, x) (1.1)

for processes performed in th room temperature. For hot forming processes, the re-
lation (1.1) is extended for temperature T of the process:

σp = f (ε, ε̇, x, T ) (1.2)
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While the deformation process depends on its history, e.g. the strain rate is changed
during the process, the flow stress is also a function of internal variables of the ma-
terial:

σp = f
(
ε, ε̇, x, T, xin

)
(1.3)

where xin is a vector of internal variables, e.g. dislocation density.

The estimation of the flow stress function parameters has been investigated by many
researchers. Selected papers are presented below. In all of them, the problem of pa-
rameter determination was transformed to the following, equivalent task: find vector
x∗ of the estimated parameters such that

x∗ = min
x

Φ (x) (1.4)

where the functional Φ is defined as

Φ (x) =

N∑

i=1

wσ
i [σ̃i − σi (x)]

2
(1.5)

or

Φ (x) =

N∑

i=1

wF
i

[
F̃i − Fi (x)

]2
(1.6)

where σ̃i is the experimental stress, calculated as the ratio of the load F̃i to the surface
between the tool and the sample with regard to the constant volume condition, σi (x)
is the flow stress calculated based on one of Equations (1.1)-(1.3), F̃i is the load
measured in the plastometric test, which is dedicated to an experiment to deter-
mine the material flow stress, Fi (x) is the load calculated with the numerical model
of the plastometric test that includes one of the flow stress equations (1.1)-(1.3), wσ

i ,
wF

i are weighted coefficients, N is the number of measurements in all the performed
tests. The task (1.4) is called inverse problem, while the direct problem is to estimate
flow stress σp given by one of Equations (1.1)-(1.3) and known equation parameters.

The minimization problem (1.4) with the functional (1.5) requires to solve the op-
timization problem of the system of equations. If this system is linear with respect
to parameters x, minimization of (1.4) provides exactly one minimum - a unique
solution of the identification problem. However, in most cases, the problem (1.5)
is not linear with respect to x and the functional (1.5) has many local minima.
Therefore, as the minimization result, not one value x∗ is obtained but the vector
of solutions [x∗

i ]i∈I is determined, such that for each component x∗
i Equation (1.4)

is fulfilled, i.e. Φ (x∗
i ) ≤ δ ∀i ∈ I, where δ is a small value.

Another disadvantage of the functional (1.5) minimization is that it does not
take into account disturbances occurring in plastometric tests: nonuniform stress
and strain field, nonuniform temperature field, heat generated due to friction and due
to deformation. Following that, the functional (1.6) with loads, calculated based
on the numerical model of the plastometric test, is applied. Plastometric tests
are thermomechanical deformation processes defined by partial differential equations
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(a detailed description of the thermomechanical model is provided in Chapter 3,
section 3.2). It means that the loads in the functional (1.6) are computed by solving
these equations. The most commonly used numerical algorithm to solve thermome-
chanical equilibrium equations is the finite element method ([147]).

The first papers on the inverse approach in the identification of material parameters
are the works [31, 26, 27, 28] where the identification was performed for the ther-
moviscoplastic model of the plastometric test. The direct problem was simulated
with commercial code Forge, initially for the 2D problem and next extended to the 3D
problem, to include material anisotropy. Due to time costs of direct calculations, the
gradient optimization algorithm with semi-analytical computations of differential co-
efficients was applied to reduce those costs. In the paper [45], a similar approach
was used, the optimization problem was solved with different gradient optimization
procedures to compare their efficiency and robustness. It should be emphasized that
the application of the gradient optimization methods excludes the existence of many
minima: the methods determine the closest local minimum.

The problem of the identification of rheological parameters based on the axisymmet-
rical plastometric test results was the subject of the author’s PhD thesis [133] and next
continued for other experiments [120, 118], tested for various materials [79, 114] and
developed for a wide class of rheological models [116, 96]. The experiments were
modeled as a rigid-plastic thermomechanical problem. As distinct from the works
quoted above, the optimization was performed, first of all, with deterministic, non
gradient procedures. The selection of a starting point for calculations is crucial for
these algorithms, which was investigated in [122]. The results of that part of the
work were summarized and a computer program dedicated to the identification of
rheological parameters was developed and described in [48]. Another approach, the
application of a two-criterion optimization to increase the robustness of inverse calcu-
lations, was studied in [30]. The investigations were continued and genetic algorithms
were applied. Stochastic methods do not restrict the number of solutions but the
computational costs increase due to the population size. To avoid the problem of a
time-consuming direct problem solver, alternative methods in which a finite element
solver of the direct problem was replaced with a metamodel of the process, were de-
veloped. Hence, stochastic optimization procedures were applied with no constraints
to the population size and the number of the solver evaluations. Metamodels based
on the approximation based technique are presented in [54, 127]. Neural networks
applied to the optimization problem of material processing are provided in [148], the
same approach used to the identification of metal flow stress is described in [129, 131].
The application of neural networks to the identification of material properties based
on the industrial process results is presented in [130]. The summary of the current
work on inverse computation is provided in [56]. One should remember that such
an approach is computationally effective but the problem of selecting one, the best
solution, still remains open.

Other identification tasks, dedicated to the estimation of material parameters in the
extrusion process, are presented in [150, 151, 152].
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Mechanical boundary conditions. For numerical modeling of metal forming pro-
cesses, the estimation of friction between a deformed material and a tool is as es-
sential as the determination of the material properties. Following that experimental
investigations and the numerical interpretation of the results of mechanical boundary
conditions are performed. One of the most commonly used method to estimate fric-
tion coefficient is the ring compression test [3]. In the test, according to the original
procedure, the inner diameters of a deformed ring are measured along its height. The
next averaged length of the inner diameter is compared to calibration curves and the
friction coefficient value is read from the chart. More precise predictions of friction
coefficients are obtained while the ring compression is modeled with the finite ele-
ment method applied to thermomechanical equations which define this process, and
numerical predictions of the ring shape after compression are compared to the shape
obtained in the experiment [133]. In this approach, not only the information on the
inner shape of the ring, but the information on the outer shape is considered, as
well. Thus, the friction identification problem is defined by Equation (1.4) and the
functional Φ is expressed as:

Φ (x) =

N∑

i=1

wd
i

[
d̃i − di (x)

]2
(1.7)

where x is an one dimensional vector, i.e. a scalar which represents the friction coef-
ficient, d̃, d are the inner/outer diameters of the ring after the compression measured
and calculated along the height of the ring, respectively, wd

i are weighted coeffi-
cients, N is the number of measurements along the ring height. The investigations
of the identification of the friction coefficient based on this test are presented in
[115, 136, 29]. A similar procedure, but for the extrusion process, is provided in
[149].

Thermal boundary/initial conditions. A wide group of the metal forming processes
are hot forming processes. Hence, determination of thermal boundary and initial
conditions is crucial to perform a proper and accurate process analysis. Temperature
measurements are carried out with thermocouples located in the selected area of the
deformed material, tool or ambient. These measurements are compared to tempera-
ture predictions calculated with the process model. Thermal problems are described
with heat transport differential equation. Precise evaluation of the temperature dis-
tribution during the process is possible, while the finite/boundary element method
or the finite difference algorithm is applied to solve this equation. Following that, for
the identification task (1.4) the functional Φ is defined as:

Φ (x) =

N∑

i=1

wT
i

[
T̃i − Ti (x)

]2
(1.8)

where x is the vector of boundary or initial condition parameters, T̃ is the temperature
measured in the process, T is the temperature calculated with the numerical model
of the process, wT

i are weighted coefficients, N is the number of measurements.
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There are a lot of papers on the identification of thermal parameters for various
processes, selected examples are referred to here. In the works [137, 138], the problem
of the estimation of thermal conductivity of steels was described, the papers [13, 33]
present the problem of the determination of the heat transfer coefficient and in the
work [11] both of these problems are discussed. In turn, the identification of thermal
parameters for solidification problems are presented in [70, 72].

The existence, uniqueness and stability of a solution is not widely discussed in
the cited references although their authors were aware of these problems. Presented
identification problems were transformed to the optimization problem (1.4) with a
functional including information on the measured and calculated quantities and the
optimization objective was to find a minimum of the functional (1.4) with respect
to the identified parameters. In most cases, the problem was described with partial
differential equations and equilibrium equations were solved with numerical meth-
ods. The question is why those problems were transformed to the optimization task,
whether the selected minimum is the solution to the original identification problem,
whether this is the only procedure to solve these problems and whether it is possible
to construct the inverse operator to identify the parameters directly from the equa-
tions describing the problem. The answers to these questions are provided in Chapter
3 but now let us consider the general identification problem for differential operators
and the problem solution stability, which are presented below.

The identification problems are expressed, in terms of the functional analysis, with
the following form:

Φ (x) =
∥∥Kx− yδ

∥∥2

Y
(1.9)

where K : X → Y is the mapping (e.g. model), such that Kx = y, X , Y are Hilbert
spaces, yδ is the measured data. Posedness of the problem depends on the properties
of mapping K and the norm in space Y . If the mapping K is a differential operator,
the inverse problem is always ill-posed (the formal definition is provided in Chapter 3,
section 3.3). To explain the ill-posedness, the following problem [21] is presented: let
f be any function such that f ∈ C1 [0, 1], δ ∈ (0, 1), n ∈ N , n ≥ 2 are selected
arbitrarily. Let us define:

f δ
n (x) := f (x) + δ sin

nx

δ
, x ∈ [0, 1] (1.10)

Let us differentiate the function f with respect to x:

(
f δ

n

)′
(x) := f ′ (x) + n cos

nx

δ
, x ∈ [0, 1] (1.11)

and estimate the error in the uniform norm:
∥∥f − f δ

n

∥∥
∞ = δ (1.12)

but: ∥∥∥f ′ −
(
f δ

n

)′∥∥∥
∞

= n (1.13)

The functions f and f δ
n can be considered as the exact and perturbed data, respec-

tively. Then, for arbitrarily small error δ, the error in the result - the derivative, can

17



be arbitrarily large, equal n. Hence, the derivative does not depend continuously on
the data for the uniform norm. Continuing, f ′ solves the simple integral equation of
the first kind:

(Kx) (s) :=

s∫

0

x (t) dt = f (s)− f (0) (1.14)

which is solvable in C [0, 1] only if f ∈ C1 [0, 1]. The corresponding direct problem is
to compute f from x, namely to integrate. Note that integration is a stable process on
C [0, 1] and a smoothing process, i.e. high errors in x expressed by (1.13) are damped
out to δ sin (nx/δ) (see (1.12)) and have a very small effect on the data for the inverse
problem. Thus, whenever a direct problem has smoothing properties it has to be
expected that oscillations appear which come from the small data perturbation in the
solution of the inverse problem. The question is whether it is possible to differentiate
a function in spite of these problems. The answer is positive if data errors are able to
be excluded. It can be done for the known bound of f ′′. In this example, such a bound
can be expressed as a bound for n in terms of δ. In terms of the functional analysis,
the problem is described as follows: if the operator K, given by (1.14), is considered
on C [0, 1], then it is a continuous linear injective operator whose inverse operator,
defined on C1 [0, 1], considered as a subspace of C [0, 1], is unbounded. However, if
K is restricted to the set

{
x ∈ C1 [0, 1] : ‖x‖∞ + ‖x′′‖∞ ≤ γ

}
, then the inverse of

this operator is continuous on its domain, i.e. it is possible to "restore stability" by
assuming an a-priori bound for f ′ and f ′′. The methods which allow to keep the
problem are called regularization methods. They are discussed in Chapter 3.

The uniqueness of the identification problem solution is the next crucial problem.
If the problem has more than one solution, the standard procedure is to bound
the parameters domain. For complex problems which include many empirical
parameters, the bounding operation is not a trivial task and this problem has to be
solved with other methods. One of the approaches is to keep the original domain
and to use stochastic optimization algorithms to obtain a set of solutions instead
of a global one. The best solution is selected arbitrarily by an expert. Such a
procedure was applied in some references on the material parameters identification,
but it was also successfully applied to other problems, see, e.g. the paper [9] on
the shape optimization of bodies by heat exchanging, the works [7, 98] on the
optimization of material structures, the investigations on the identification of voids
in a microstructure in [53] or the identification of the parameters of microscale heat
transfer in [12] and the paper [69] on the inverse problem of solidification.

Another solution is to use sensitivity analysis algorithms as a supporting tool for
the identification problem. Local sensitivity analysis procedures, calculating Jaco-
bian, have been just applied to solve various tasks, e.g. for non-linear mechanical
problems [44, 109, 108] or for thermal problems [68, 67, 71]. However, there are other
sensitivity algorithms, called global procedures, which allow to estimate the global
impact of the parameters to model outputs. Both groups of methods, the local and
the global ones, are helpful to reduce the number of solutions, to estimate the quality
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of the solutions, to select the most important model parameters and to eliminate pa-
rameters which do not affect the model. The sensitivity analysis methods, the local
and the global ones, are the subject of this work, and they are applied to support
identification problems in metal forming.

Two problems: stability and uniqueness, are essential for the proper solution of the
identification inverse problems. They are discussed in the work in terms of the func-
tional analysis. To date, identification tasks in metal forming have been transformed
to the optimization problems defined by (1.4) and, only in a few investigations, the
results were validated. In this work, the problem of solution regularity is consid-
ered. The sensitivity analysis methods have been developed and applied to validate
new models introduced to the solver, to determine the accuracy of the parameter
estimation, and to verify the robustness of inverse calculations.



2 The thesis and the structure of the book

2.1 The thesis and the objectives of the work

The main thesis of this work is expressed as follows:

It is possible to obtain an optimal solution for ill-posed inverse problems of identifi-
cation with the application of sensitivity analysis methods combined with the optimiza-
tion procedures. Sensitivity analysis decreases the computational costs of the identifi-
cation and increases reliability of the solution.

The primary objective of the work is to develop a method which will allow for
the identification of model parameters used in numerical simulations of the metal
forming processes. Numerical models of metal forming processes are complex, they
include several equations, at least the mechanical model of continuum and the heat
transfer equation. Thus, the problem of identification is an ill-posed inverse problem.
Available regularization algorithms do not support such a complex model and the
problem of identification becomes a hard one. It is expected that the development
of the sensitivity analysis procedures derived from the original sensitivity methods
and the design of the identification strategy algorithm will enable to solve identifica-
tion problems in metal forming and to obtain results close enough to the optimal ones.

The next objective of the work is to decrease computational costs of the identifi-
cation. Due to a non-stationary nature of the problem and due to solvers, based
on the finite element method with hp-adaptation for high quality of the solution,
numerical models of the metal forming processes are computationally expensive. The
identification task requires to run the solver many times, particularly if the number
of parameters to be identified is large. Therefore, a supporting tool for the reduction
of the number of solver evaluations is of the interest. This tool is based on sensitivity
analysis which indicates the parameters of high importance and these parameters are
decision variables in the optimization task. The computational cost is lower because
of reducing the space dimension of decision variables. Another advantage of the
application of sensitivity analysis is that the number of possible solutions is constraint.

The results of sensitivity analysis can be applied as a preliminary step of opti-
mization to bound or extend the parameters domain, generate starting points for
optimization or to investigate the behavior of the functional defined in optimization.

Another application of sensitivity analysis is to develop hybrid optimization
procedures, such as a combination of nondeterministic optimization methods and
the local sensitivity analysis algorithms for exploring local minima.
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Practical results of the work is the application of sensitivity analysis combined with
the inverse solver. The following problems were solved in the work: identification of
mechanical boundary condition (friction coefficient), identification of parameters of
rheological models, parameters of the phase transformation model, identification of
control parameters of the production cycle. All the listed problems were solved with
the developed software.

2.2 The structure of the book

The monograph consists of seven chapters and, in addition, one appendix. The pre-
sentation starts in Chapter 1 with state of the art of identification problems inves-
tigated in metal forming. Most of these problems are transformed to optimization
tasks with a wide range of the optimization methods applied; however, there is weak
justification of the properties of the obtained results, particularly in terms of the
mathematical background. Another group of problems discussed in this chapter are
applications of sensitivity analysis. To date, sensitivity analysis in metal forming
has been understood as calculations of partial derivatives and sensitivity matrix in
numerical methods of solving partial differential equations. The application of the
global sensitivity methods has not been investigated. At the end of this chapter, up
to date achievements are summarized and the weaknesses of theoretical research are
focused on. The conclusions from Chapter 1 were basis to formulate the thesis and
the contents of the work, presented in Chapter 2.

Chapter 2, section 2.1 includes the main thesis of the work as well as the objectives
of the work and the list of problems solved with the identification strategy algorithm
developed in the work. This section 2.2 provides a brief overview of the book.

Chapter 3 provides general equilibrium equations used in the modeling of metal
forming processes and formulates inverse problems for these equations. The math-
ematical background of inverse operators and an attempt to apply mathematical
formalism to construct the inverse operator for these equations is included.

Chapter 4 provides a description of sensitivity analysis methods and the ability to
apply sensitivity analysis algorithms to inverse calculations as a supporting tool. The
application of sensitivity methods to direct problems are included in the chapter,
as well. A description of local sensitivity procedures with the algorithm of semi-
analytical derivative computation and the application of accelerated nondeterministic
optimization method is presented. In the second part of the chapter, global sensitivity
procedures for the estimation of the parameters importance are provided.

Chapter 5 presents a developed algorithm dedicated to the parameters identifica-
tion of models with the application of the sensitivity analysis methods described in
Chapter 4. In the identification strategy algorithm the inverse problem is solved with
the mathematical background provided in Chapter 3 to construct an inverse operator
and sensitivity methods presented in Chapter 4 applied to the direct problem and
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to functional defined in the optimization task. The developed algorithm was imple-
mented and all the calculations of identification problems included in Chapter 6 were
performed with the designed software.

In Chapter 6 solutions of various inverse problems of metal forming, including
identification of material models, boundary conditions and a design of the produc-
tion cycle, are discussed. The problems were solved with the identification strategy
algorithm developed in the work (see: Chapter 5).

The book ends with Chapter 7 which is a synthesis of the work achievements.
This chapter outlines the directions for future research, as well. The conclusions
are followed by Appendix which includes some definitions of the functional analysis
helpful in understanding Chapter 3.



3 Inverse problems.

The mathematical background

The problems of identification presented in Chapter 1 clearly show that the inverse
problems solved in metal forming did not have good mathematical background and
any statement of uniqueness, quality of the solution or convergence and stability
of the applied algorithm could not be made. Therefore, the theoretical and math-
ematical background of inverse problems were investigated to verify whether there
are well-established mathematical methods which allow to solve inverse problems in
metal forming. This chapter is dedicated to the mathematical formalism of inverse
operators.

Physical phenomena in metal forming processes are described by differential, phe-
nomenological/empirical equations or are a combination of those two equation types.
To analyze the process, a series of physical experiments and mathematical calculations
are performed. Nowadays, mathematical modeling supported with physical experi-
ments are a powerful tool to understand the processes run. The processes modeling
is being performed in the following steps:

• identification of physical phenomena and the selection of physical laws,

• mathematical description of the physical model,

• calculation model; a selection of the solution: analytical or numerical; if the
numerical method is applied: a selection of the method including the estimation
of the approximation error,

• identification of the material properties, initial and boundary conditions; the
estimation of the error/sensitivity of the model output with respect to the
material and initial/boundary parameters,

• model runs/performing calculations; an analysis of the results.

In these investigations, the problem of the material characteristics and the accu-
racy of initial/boundary properties is considered. The assumption is made that the
physical phenomena, the mathematical description and the solution method are well
assigned.

3.1 Modeling of metal forming processes

Two phenomena are considered in modeling of metal forming processes in the basic
form: mechanical equilibrium of state and heat transport. Both phenomena are
described by differential equations with boundary and/or initial conditions.
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Mechanical equilibrium. Let the body concerned be defined in subset Ω ⊂ Rn with
boundary Γ = ∂Ω. Equilibrium equation (total momentum equal zero) is expressed
as [24, 80]:

div (σσσ) = ∇ · σσσ = 0 (3.1)

where σσσ is the Cauchy stress tensor, dependent on the velocity field u ∈ V and V

is a function space where the solution is determined. On boundary Γ, the following
conditions are defined:

u = u0 on ΓD (3.2)

n ·σσσ = τττ on ΓN (3.3)

where u0 is the assumed velocity field on the boundary ΓD, τττ is the load acting on
the body applied to the boundary ΓN (the unit is load on boundary ΓN unit), n

is the unit vector normal to the boundary Γ oriented outside, and ΓD ∪ ΓN = Γ,
ΓD ∩ ΓN = ∅. The assumption is made that during deformation the volume of the
body is constant, i.e. elastic strains are very small compared to plastic strains [36].
The tensor of strain rate is defined as a symmetric part of the velocity gradient tensor
∇u:

ε̇εε =
1

2

(
∇u +∇T u

)
or εεεij =

1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(3.4)

Incompressibility of the body is equivalent to the volume strain rate being a zero:

ε̇εεV (u) = ε̇εεii (u) = 0 or tr (ε̇εε) = div (u) = ∇ · u = 0 (3.5)

and it restricts the velocity space V. Equations (3.1)-(3.5) define the problem of
plastic deformation of a body with incompressibility.

In the flow theory of plasticity, the strain rates ε̇εε are related to stresses σσσ by the
Levy-Mises flow rule:

σσσ =
2

3

σi

ε̇i

ε̇εε (3.6)

where σi is the effective stress and ε̇i is the effective strain rate. According to the
Huber-Mises yield criterion, the effective stress σi is equal to the flow stress σp which
characterizes plastic material properties and is a phenomenological function of strain
ε, the strain rate ε̇ and/or temperature T : σp = f (ε, ε̇, T ).

In the considered deformation problem, there is friction between the deformed body
and the tool. Two basic models, and the modifications derived from them, are applied:

• The classic Coulomb model for static friction. In tensor form the friction is
expressed as:

τττ = µσN
us

|us|
(3.7)

where τττ is the shear stress, µ is the friction coefficient, σN is the normal stress
(caused by tool stress) and us is the slip velocity of the body in relation to tool.

24



• The Tresca model which assumes that friction stress τ is the function of shear
strength of the material:

τττ = mτmax
us

|us|
(3.8)

where m is called the friction factor, and τmax yields stress in shear equals
τmax = σp

/√
3 according to Huber-Mises yield criterion.

• The Chen-Kobayashi friction model [14] of the form:

τττ = −mcσp

[
2

π
arctan

(us

a

)]
(3.9)

where a is a constant, few order smaller than an average slip velocity. If the
slip velocity us is large, the formula (3.9) is equivalent to the Tresca’s friction
law (3.8) and m =

√
3mc.

Heat transport equation. Primary heat transport equation is defined as [62, 145]:

∇ · (k∇T ) + Q̇ = ρcp
∂T

∂t
(3.10)

where t is time, T = T (x, t) is the temperature distribution, k is the conductivity, ρ is
the material density, cp is the specific heat, Q̇ is the density of inner heat source energy
(the rate of heat generation due to deformation work). The following convection
boundary condition is applied:

k (n · ∇) T = q̇ + α (To − T ) (3.11)

where α is the heat transfer coefficient, To is ambient or tool temperature, q̇ is the
heat flux due to friction on the boundary Γ.

The initial condition is expressed as:

T (x, 0) = T0 (x) (3.12)

where T0 is the initial temperature distribution at time t = 0.
Quantities Q̇ and q̇ describe heat generated due to plastic deformation and heat

generated due to friction between the material and the tool, respectively. Following
[36, 46, 95, 145], they are defined as:

Q̇ = ν

∫

Ω

σpε̇idΩ ν ∈ [0.9, 1] (3.13)

q̇ =

∫

Γ

mcσp |us| dΓ
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Equations (3.1)-(3.13) define a thermomechanical problem of deformation for rigid-
plastic material. The problem is quasi-stationary, i.e. in every time step the problem
is solved as a stationary problem which satisfies the equilibrium condition. The results
of the solution in time t are input data for the next time step t + 1. The solution is
obtained with the finite element method. A detailed description of the rigid-plastic
approach coupled with the solution of the heat transport equation is presented in
[46, 61].

3.2 Inverse problems for the thermomechanical deformation

problem

A direct problem for the thermomechanical problem described by Equations (3.1)-
(3.13) is defined as

• for boundary conditions given by Equations (3.2) and (3.3) with the known
parameters of friction model (3.7), (3.8) or (3.9), known constitutive relation
(3.6), particularly the function of flow stress σp, and all the parameters included
in the heat transport equations (3.10)-(3.11) to determine velocity field u, tem-
perature field T (x), and the next displacement field, strain-stress distribution.

Inverse problems for the thermomechanical problem (3.1)-(3.13) are as follows:

• for known velocity field u to determine mechanical boundary conditions, i.e.
friction coefficient in Equation (3.7), (3.8) or (3.9),

• for known velocity field u to determine parameters of the flow stress function
σp in constitutive relation (3.6),

• for known temperature field T (x) to determine the initial temperature field
T0 (x),

• for known temperature field T (x) to determine parameters of thermal boundary
conditions (3.11).

To solve the inverse problems listed above, the inverse operator should be designed
for the determination of input data or process parameters. The question is whether it
is possible to construct an inverse operator. Therefore, in section 3.3, mathematical
background of inverse operators is presented.

3.3 General formulation of the inverse problem

Mathematical formulation of the material properties or initial/boundary conditions
estimation is called an inverse problem. To analyze and solve that problem it is
convenient to apply functional analysis.

Let K : X → Y be a mapping between two normed spaces X and Y :

Kx = y x ∈ X, y ∈ Y (3.14)
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The mapping K describes a process under study. For the operator K two problems
can be defined:

• a direct problem: for known x, evaluate Kx,

• an inverse problem: for known y, solve the equation Kx = y for x.

In particular the mapping K can be a linear differential equation of the generalized
form:

Kx = y where Kx =
∑

|α|≤n

Aα(x)Dαx (3.15)

where Aα and y are the functions defined on Ω ⊂ Rn, function x defined as x : Ω→ R,
multi-index α is n-tuple such that α = (α1, . . . , α2) ∈ Nn

0 and |α| = α1 + α2 . . . αn,
Dα = ∂α1

1 ∂α2
2 . . . ∂αn

n where ∂αi

i = ∂αi

∂x
αi
i

.

If the analyzed phenomena are described with Equation (3.15), two classes of inverse
problems are distinguished:

• a reconstruction problem: determination of initial condition x0,

• an identification problem: estimation of quantities characterizing material prop-
erties - determination of functions Aα(x).

To solve a physical problem, its mathematical model must be well-posed, which
means that a solution to the problem exists, it is unique and it continuously depends
on the data (the stability property). If the solution does not exist, the solution space
must be extended. If there is more than one solution, additional, more restriction
conditions must be included in the model. The property of the continuous dependence
on the data is the most important one. If it is not held, any calculations cannot be
performed due to uncontrolled disturbances. It is not possible to determine the right
problem estimation if the answer to the question whether the obtained results are the
solution or a noise is not known. To eliminate the lack of stability, more information
about the solution is needed. The formal definition of a well-posed problem was
proposed by Hadamard [34]:

Definition 3.3.1 (Well-posed problems). Let K : X → Y be a mapping between
normed spaces X and Y . The equation Kx = y is well-posed (properly-posed) if the
following properties are held:

1. Existence. For every y ∈ Y there is, at least one, x ∈ X such that Kx = y:
∀y ∈ Y ∃x ∈ X : Kx = y

2. Uniqueness. For every y ∈ Y there is at most one x ∈ X such that Kx = y:
∀y1, y2 ∈ Y : y1 = Kx1, y2 = Kx2 ∧ y1 = y2 ⇒ x1 = x2

3. Stability. The solution x depends continuously on y:
∀ sequence

(
x(n)

)
⊂ X, Kx(n) → Kx (n→∞) ⇒ x(n) → x (n→∞)
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If at least one of these conditions is not held, the equation is called ill-posed (improp-
erly posed).

Regarding the definition 3.3.1, to solve any inverse problem a specification of the
triple {X, Y, K} with their norms is required. The first two properties, existence and
uniqueness, depend only on the algebraic characteristic of the spaces and the operator
(considering if the operator is onto or one-to-one). The stability depends also on the
spaces topologies, i.e. whether the inverse operator K−1 : Y → X is continuous.
Solving the problems presented in Chapter 1 leads, except some trivial cases, to the
variational (integral) formulation [60, 147]. Integral operators are compact operators
in many natural topologies. It can be proved that for the compact operator K, the
inverse problem of the linear equation Kx = y is always ill-posed [43]:

Theorem 3.3.1. Let K : X → Y be a linear compact operator over normed spaces
X and Y with kernel N (K) := {x ∈ X : Kx = 0}. Let the dimension of the fac-
tor space X/N (K) be infinite. Then there exists a sequence

(
x(n)

)
⊂ X such that

K
(
x(n)

)
→ 0 but

(
x(n)

)
does not converge. Moreover, there exists the sequence(

x(n)
)

such that
∥∥x(n)

∥∥→∞. In particular, if K is one-to-one, the inverse operator
K−1 : Y ⊃ K (X)→ X is unbounded.

To solve the problem of ill-posedness, it is convenient to introduce the definition of
the best-approximation solution of Kx = y.

Definition 3.3.2. K : X → Y is a bounded linear operator, X, Y - Hilbert spaces.

1. x ∈ X is the least-square solution of Kx = y if ‖Kx− y‖ =
inf {‖Kz − y‖ : z ∈ X}

2. x ∈ X is the best-approximation solution of Kx = y if x is the least-square
solution of Kx = y and x is of the minimal norm:

‖x‖ = inf {z : z is the least− square solution of Kx = y}

The term of the best-approximation solution in the definition 3.3.2 is closely related
to the Moore-Penrose inverse operator K∧ defined as follows:

Definition 3.3.3. The Moore-Penrose (generalized) inverse operator K∧ of the linear
operator K : X → Y , where X, Y are Hilbert spaces, is defined as the unique linear
extension of K−1 to:

D (K∧) := R (K) +R (K)⊥

and

N (K∧) = R (K)⊥

where

K∧ := K|N (K)⊥ : N (K)⊥ → R (K)
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Taking into account the theorem 3.3.1, the proper identification of material prop-
erties or boundary conditions in the computations of metal forming processes have
to be supported by a method which will satisfy the definition 3.3.1 of well-posedness.
Such a class of mappings is called regularization strategies which allow transformation
of ill-posed problems to well-posed problems. The definition of the regularization and
selected methods of this approach are presented in the next section.

3.4 Regularization

The main idea of regularization is to transform an ill-posed problem into a well-posed
one. The formal definition of regularization is formulated as:

Definition 3.4.1 (Regularization). A regularization strategy is a family of linear
and bounded operators Rα : Y → X, α > 0 such that lim

α→0
RαKx = x ∀x ∈ X. It

means that the operators RαK convergence pointwise to identity.

In many practical problems, the exact value of y is not known because this quantity
is measured or derived from measurements. It means that the disturbed value yδ for
δ > 0 is known:

∥∥y − yδ
∥∥ ≤ δ (3.16)

The following equation (3.16) solving inverse problem for (3.14) is equivalent to find
a value xδ such that:

Kxδ = yδ (3.17)

If no additional information of mapping K is known, one can not assume that the
solution yδ belongs to the K image K (X). Therefore, one is estimating only a
sufficiently good approximation xδ of x.

The error between the exact value x and the approximated one xδ
α := Rαyδ with

the regularization strategy can be estimated with the use of the triangle inequality:

∥∥xδ
α − x

∥∥ ≤
∥∥Rαyδ −Rαy

∥∥+ ‖Rαy − x‖ ≤
∥∥Rαyδ −Rαy

∥∥+ ‖Rαy − x‖
≤ ‖Rα‖

∥∥yδ − y
∥∥+ ‖RαKx− x‖ ≤ ‖Rα‖ δ + ‖RαKx− x‖ (3.18)

The error (3.18) of approximation is the sum of two components. To estimate this
error the behavior of the components has to be known. The component ‖RαKx− x‖
is increasing with an increase in α and it is going to zero while α is going to zero
according to the definition 3.4.1 of regularization. To estimate the ‖Rα‖ component,
let us consider the following theorem (the proof can be found in [43]):

Theorem 3.4.1. Rα is the regularization strategy for a compact operator K : X → Y
and dimX = ∞. Then, the sequence (RαKx) does not converge uniformly on the
bounded subset of X, i.e. there is no convergence of RαK to identity I in the operator
norm.
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Based on the theorem 3.4.1, it is observed that the component ‖Rα‖ is going to
infinity while α is going to zero. It means that the formula (3.18) should be minimized
with respect to α while the value of δ is fixed (Figure 3.1). These considerations lead
to the definition of the admissibility of the regularization strategy.

Definition 3.4.2. The regularization strategy α = α(δ) is admissible if the following
property is held:

α(δ)→ 0 ∧ sup
{∥∥Rα(δ)y

δ − x
∥∥ :
∥∥Kx− yδ

∥∥ ≤ δ
}
→ 0, δ → 0 ∀x ∈ X.

Figure 3.1: Total error of approximation.

The definitions 3.4.1 and 3.4.2 imply that to solve the inverse problem of the equation
Kx = y for y ∈ Y , one has to select not only a regularization operator Rα but a
parameter α as well, in such a way that the regularized solution converges, in the
norm, if the disturbance of y tends to zero. It means that one looks for a pair (Rα, α)
that is called the regularization method. Then, the regularization procedure consists
of the following steps:

• selection and construction of the regularization operator Rα,

• determination of the parameter α of the regularization procedure with the prop-
erty of the convergence to the solution.

The question is how this process should be designed to be efficient in terms of
calculations. Some of the regularization methods, which are applied to the inverse
metal forming problems, especially the identification problems, are presented in the
next section.

In this section, the main definitions and theorems of inverse problems are presented,
which are the background to investigate sufficient methods and tools to solve these
problems. More details on the theory of inverse problems can be found in [21, 43].

3.5 Methods of regularizations

One of the methods to construct the admissible regularization strategy is using the
singular system of the operator K (for the definition, see: A.0.9). If K : X → Y is
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a linear compact operator with the singular system (µj , xj , yj) the solution x of the
equation Kx = y is concluded from the Picard theorem (A.0.5) and it is given by:

x =
∞∑

j=1

1

µj
(y, yj) xj (3.19)

for y ∈ K (X).
Below there are presented theorems illustrating the functions that are admissible
regularization strategies.

Theorem 3.5.1. K : X → Y is a compact operator with the singular system
(µj , xj , yj) and there is a function of the following form q : (0,∞) × (0, ‖K‖) → R

such that:

1. |q (α, µ)| ≤ 1 for all α > 0 and 0 < µ ≤ ‖K‖.

2. for every α > 0 there exists c (α) such that |q (α, µ)| ≤ c (α) µ for all 0 < µ ≤
‖K‖,

3. lim
α→0

q (α, µ) = 1 for every 0 < µ ≤ ‖K‖.

Then the operator Rα : Y → X, α > 0, defined as Rα :=
∞∑

j=1

q(α,µj)
µj

(y, yj) xj is

a regularization strategy with ‖Rα‖ ≤ c (α). A choice α = α (δ) is admissible if
α (δ) → 0 and δc (α (δ)) → 0 as δ → 0. The function q is a regularizing filter
for operator K.

4. the item 3 can be replaced with another, stronger assumption:

There exists c1 > 0 such that |q (α, µ)− 1| ≤ c1

√
α

µ for all α > 0 and 0 < µ ≤
‖K‖ and if x ∈ K∗ (Y ), then ‖RαKx− x‖ ≤ c1

√
α ‖z‖, where x = K∗z,

5. the item 3 can be replaced with another, stronger assumption:
There exists c2 > 0 such that |q (α, µ)− 1| ≤ c2

α
µ2 for all α > 0 and 0 < µ ≤

‖K‖ and if x ∈ K∗K (X), then ‖RαKx− x‖ ≤ c2α ‖z‖, where x = K∗Kz.

Every pair: a function q : (0,∞) × (0, ‖K‖) → R and the quantity α that satisfy
the properties of the theorem 3.5.1 is a regularization strategy of the inverse equation
Kx = y. Selected filters that are used to regularize inverse problems are presented
next.

Let us define the function q of the form:

q (α, µ) = µ2/
(
α + µ2

)
(3.20)

This function satisfies the assumption (2) of the theorem 3.5.1 for c (α) = 1/2
√

α, the
assumption (4) for c1 = 1/2 and the assumption (5) for c2 = 1.

Let us define the function q of the form:

q (α, µ) = 1−
(
1− aµ2

)1/α
(3.21)
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for some parameter a such that 0 < a < ||K||2. This function holds the assumption
(2) of the theorem 3.5.1 for c (α) =

√
a/α, the assumption (4) for c1 = 1/

√
2a and

the assumption (5) for c2 = 1/a.
Let us define the function q of the form:

q (α, µ) =

{
1 µ2 ≥ α
0 µ2 < α

(3.22)

This function holds the assumption (2) of the theorem 3.5.1 for c (α) = 1/
√

α and
the assumptions (4) and (5) for c1 = c2 = 1/a.

All of the functions (3.20)-(3.22) possess the assumptions (1), (2) and (3)-(5) of the
theorem 3.5.1, respectively. It means, that these functions are regularizing filters and
lead to admissible regularization strategies.

3.5.1 Tikhonov regularization

To construct the Tikhonov regularization strategy, let us consider the definition 3.3.2
of the best-approximation solution of Kx = y. It is noticed (and proved in [43, 21])
that there exists a set of the least-square solutions given by x∧ + N (K) and x∧ is
the unique best-approximation solution, where N (K) is the kernel of K. Moreover,
the least-square solution x ∈ X of Kx = y can be described by the Gaussian normal
equation of the form:

K∗Kx = K∗y (3.23)

where K∗ is the adjoint operator of K (A.0.2). The Gaussian normal equation (3.23)
is consistent with the definition 3.3.3 of the Moore-Penrose inverse operator K∧.

Let us estimate the approximation error:

‖Kx− y‖2 − ‖K∧x− y‖2
= ‖K (x− x∧)‖2

+ 2Re (K∧x− y, K (x− x∧))

= ‖K (x− x∧)‖2
+ 2Re (K∗ (K∧x− y) , x− x∧)

(3.24)

If x∧ is the best-approximation solution of the problem Kx = y and it solves the
normal equation (3.23) then the error ‖Kx− y‖2−‖K∧x− y‖2 ≥ 0 and x∧ minimizes
‖Kx− y‖.
Now, let us express x ∈ X as x = x∧ + cx̄ for any c > 0 and x̄ ∈ X . Thus, if x∧

minimizes ‖Kx− y‖ and (3.24) is held, one arrives at:

0 ≤ ‖Kx− y‖2 − ‖K∧x− y‖2 = c2 ‖Kx̄‖2 + 2cRe (K∗ (K∧x− y) , x̄)

= c ‖Kx̄‖2 + 2Re (K∗ (K∧x− y) , x̄) (3.25)

Keeping in mind the estimation error (3.25), to determine the solution of the linear,
bounded operator Kx = y for given y ∈ Y , the minimization problem of the following
form has to be solved:
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Φα := ‖Kx− y‖2
+ α ‖x‖2

for x ∈ X (3.26)

The functional (3.26) is called Tikhonov functional. This functional has a unique
minimum xα ∈ X that can be expressed with normal equation:

αxα + K∗Kxα = K∗y (3.27)

The functional (3.26) is well-defined and it is an admissible regularization strategy
according to the definition (3.4.2). The minimum xα - the solution of Equation (3.27),
can be put as xα = Rαy, where:

Rα := (αI + K∗K)
−1

K∗ : Y → X (3.28)

Selecting the singular system (µj , xj , yj) for the operator K, it is observed that Rα

is of the form:

Rα =

∞∑

j=1

µj

α + µ2
j

(y, yj) xj y ∈ Y (3.29)

Assuming the function q (α, µ) = µ2

α+µ2 , the regularization operator is represented by:

Rα =

∞∑

j=1

q (α, µ)

µj
(y, yj) xj y ∈ Y (3.30)

In Equation (3.30) q is the same function as the one defined by (3.20). Thus, q is
the regularization filter for the operator Rα given by (3.29) according to the theorem
(3.5.1) and the Tikhonov functional (3.26) is the admissible regularization strategy
of the equation Kx = y for the given y ∈ Y . Moreover, it can be proved that for the
disturbed data yδ the Tikhonov regularization strategy Rαyδ is admissible for every

choice α (δ) → 0, δ → 0 if δ2/
α (δ) → 0, δ → 0 (the parameter α should converge to

0 as δ is going to 0 but not so fast as δ2).

3.5.2 Iteration methods

In this group of the regularization methods, the regularization parameter α is an
equivalent to the iteration index and the method itself defines the stopping rule.
Below, the iterative methods applied to inverse problems are listed. All of them are
proved to be a regularization strategy:

• Landweber iteration,

• the conjugate gradient method,

• υ-methods (semiiterative).

The first two algorithms have found practical applications and they are presented
below. The descriptions of the last one is included in e.g. [21, 43].
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Landweber iteration. Transforming the basic equation (3.14) with the normal form
(3.23, the equation of the form is obtained x = x+K∗ (y −Kx) and next the iteration
scheme is derived:

x(0) := 0 x(k) = (I − αK∗K) x(k) + aK∗y a > 0 (3.31)

for k = 1, 2, . . . . This scheme is equivalent to the steepest descent algorithm applied
to the quadratic functional Φ (x) = ‖Kx− y‖2. The scheme (3.31) is the linear
recursive formula of x(k). Applying induction with respect to k, it is observed that
x(k) is of the form x(k) = Rky where the operator Rk : Y ← X is expressed as:

Rk := a

k−1∑

i=0

(I − aK∗K)
i
K∗ k = 1, 2, . . . (3.32)

If the singular system (µj , xj , yj) for the compact operator K is selected then Rky is
given by:

Rky =
∞∑

j=1

µj

k−1∑

i=0

(
1− aµ2

j

)i
(y, yj) xj

=

∞∑

j=1

1

µj

[
1−

(
1− aµ2

j

)k
]

(y, yj) xj

=

∞∑

j=1

q (k, µj)

µj
(y, yj) xj , y ∈ Y (3.33)

where q (k, µj) =
[
1−

(
1− aµ2

j

)k
]
. The function q (k, µj) is a regularization filter q

defined as in Equation (3.21) for α = 1/k. Thus, according to the theorem 3.5.1, the
operator Rk is an admissible regularization strategy with discrete parameter α.

In the most practical application solved with the iterative procedures, the following
stopping rule is used: the algorithm is stopped at the first occurrence of k ∈ N such
that

∥∥Kx(k),δ − yδ
∥∥ ≤ rδ, where r > 1 is a constant. It is shown (e.g. in [43]) that

the selection of k for the stopping rule is possible for the Landweber scheme and leads
to the optimal regularization strategy.

Conjugate gradient method (CGM). Originally, the algorithm was developed for
the least squares problems for the system of linear equations of the form Kx = y,
where K ∈ Rm×n, m ≥ n. In the method, the error defined as Φ (x) := ‖Kx − y‖2

is minimized, where x ∈ Rn, ‖·‖ denotes the Euclidean norm in Rm ([55, 84]). For
the purpose of the inverse problem consideration, the operator equation Kx = y is
given with K : X → Y linear, bounded, injective operator, X , Y are Hilbert spaces
and K∗ : Y → X is an adjoint operator of K. Now, the functional Φ is defined as:

Φ (x) := ‖Kx− y‖2
= (Kx− y, Kx− y) , x ∈ X (3.34)

The derivative ∇Φ is the Frechet derivative of Φ at x, and it is equal
∇Φ (x) = 2K∗ (Kx− y) ∈ X (from the Riesz theorem).
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The procedure of the conjugate gradient method is listed in the algorithm 3.1.

Algorithm 3.1 The conjugate gradient method (CGM)

1: x(0) ← 0, k← 0
2: if K∗y = 0 then

3: return x(0)

4: else

5: p(0) ← −K∗y = 1
2∇Φ

(
x(0)

)

6: end if

7: while true do

8: t(k) ← (Kx(k)−y,Kp(k))
‖Kp(k)‖2

9: x(k+1) ← x(k) − t(k)p(k)

10: if K∗ (Kx(k+1) − y
)

= 0 then

11: return x(k+1)

12: else

13: γ(k) ← ‖K∗(Kx(k+1)−y)‖2

‖K∗(Kx(k)−y)‖2

14: p(k+1) ← K∗ (Kx(k+1) − y
)

+ γ(k)p(k)

15: k ← k + 1
16: end if

17: end while

From the Fletcher-Reeves theorem ([43]), the CGM method is well-defined and either
stops or produces sequences

(
x(k)

)
,
(
p(k)

)
⊂ X such that:

(
∇Φ

(
x(k)

)
,∇Φ

(
x(j)

))
= 0 and

(
Kp(k), Kp(j)

)
= 0 ∀ j 6= k (3.35)

i.e. the gradients are orthogonal and the directions p(k) are K-conjugate. Moreover,
it yields:

(
∇Φ

(
x(j)

)
, K∗Kp(k)

)
= 0 ∀ j < k (3.36)

The sequence
(
p(k)

)
defines the space Vk := span

{
p(0), . . . , p(k)

}
, which is called a

Krylov space. The following forms are equivalent for Vk:

Vk = span
{
∇Φ

(
x(0)

)
, . . . ,∇Φ

(
x(k)

)}

= span
{

p(0), K∗Kp(0), . . . , (K∗K)
k

p(0)
}

, k = 0, 1, . . . (3.37)

Furthermore, x(k) is the minimum of Φ on Vk for every k ≥ 1, and x(k) can be
expressed as:
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x(k) = −Pk−1 (K∗K) p(0) = −Pk−1 (K∗K) K∗y (3.38)

where Pk−1 is a well-defined polynomial of degree k − 1.
To show that the CGM is a regularization strategy, let us assume that (µj , xj , yj)
is a singular system for the operator K. The operator Pk−1 (K∗K) K∗ : Y → X
corresponds to the regularization operator Rα of the general regularization theory, al-
though it depends on the right-hand side y. Thus, the mapping y → Pk−1 (K∗K) K∗y
is nonlinear.

Let us consider a special case, such that y =
n∑

j=1

αjyj ∈ Yn := span {y1, . . . yn},

n ∈ N, then x(k) = Pk−1 (K∗K) K∗y =
n∑

j=1

αjPk−1

(
µ2

j

)
µjxj and x(k) ∈ Xn :=

span {x1, . . . xn}. In this special case, the algorithm stops after at the most n it-
erations since the dimension of space Xn is at most n and the gradients ∇Φ

(
x(i)
)

are orthogonal to each other. This is the explanation why CGM applied to matrix
equations terminates after the finite number of iterations. Generally, for operator
equations defined in infinite-dimensional Hilbert spaces, CGM produces infinitely
many elements.

3.5.3 Regularization by projection

For numerical calculations the regularization algorithms implementable in finite-
dimensional spaces are looked for. Let us consider the operator equation of the form
Kx = y. One of the approaches to approximate x∧ is the least-squares projection,
i.e. to find the minimum of Kx = y in terms of the norm in Y space, in a finite-
dimensional subspace of X . It is obtained by defining a sequence X1 ⊂ X2 ⊂ . . .
of finite-dimensional subspaces of X whose union is dense in X . Let x(k) be the
least-squares solution of the minimal norm in the space Xk and:

x(k) = K∧
k y (3.39)

where Kk = KPk, Pk is an orthogonal projector onto Xk, K∧ is defined as 3.3.3.
Since Kk is of a close range, the operator K∧

k is bounded and thus x(k) is a stable
approximation of x∧. To ensure the convergence of x(k) to x∧, additional assumptions
are required:

Theorem 3.5.2. Let y ∈ D (K∧) and x(k) is defined as 3.39. Thus:

• x(k) → x∧ if and only if
{∥∥x(k)

∥∥} is bounded,

• x(k) → x∧ if and only if lim sup
k→∞

∥∥x(k)
∥∥ ≤ ‖x∧‖

The strong convergence introduced in the theorem 3.39 in the second item is hard
to control since the true solution norm is not known in most cases. Instead of this
condition, another one is assumed of the following form:

lim sup
k→∞

∥∥∥(K∧
k )

∗
x(k)

∥∥∥ = lim sup
k→∞

∥∥∥(K∗
k)

∧
x(k)

∥∥∥ (3.40)
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The condition (3.40) is sufficient for the convergence of
(
x(k)

)
to x∧ (for the proof,

see: [21]).

Finite-dimensional approximation algorithms like discretization methods: colloca-
tion, Galerkin or Ritz approximation belong to the regularization by projection group
of regularization methods. The details of these algorithms are presented in [21] for
example.

3.6 Numerical computation

Most of the direct problems that are discussed in metal forming are solved with
numerical methods. Thus, to solve an inverse problem, the regularization method
should be established by the finite-dimension approximation procedure in the finite-
dimension space. This regularization procedure most often consists of three main
steps: discretization, transformation to the standard form and the regularization of it.
Even though the discretization methods are regularization algorithms by themselves,
as it was mentioned in section 3.5.3, some further regularization is recommended to
increase the algorithm stabilization and to extend the discretization subspaces.
Let subspaces of discretization be denoted by Xn ⊂ X and Y m ⊂ Y with the bases
expressed as:

Xn = span
{

eX
1 , . . . , eX

n

}
, Ym = span

{
eY

1 , . . . , eY
m

}
(3.41)

Let x∗ ∈ Xn be the approximation of the exact solution x. Now x∗ is defined with
the projection equation:

PmKxn = Pmy (3.42)

where Pm : Y → Ym. x∗ ∈ Xn is represented using the coordinate vector x ∈ Rn

corresponding to the combination:

x∗ = φ1eX
1 + φneX

n , x = (φ1, . . . , φn)
T

(3.43)

In this form, the projection equation (3.42) yields a system of equation for the n
unknown coordinates {φi}. In many practical applications, this system is still ill-
conditioned to be numerically solved and further regularization is needed, like iterative
methods or the Tikhonov regularization described in this chapter.

Reduction to standard form. There are two regularization forms: a general form
and a standard form. The regularization is in the standard form if the coordinate
space Rn, where the unknown vector x belongs to, is equipped with the Euclidean
norm. If this norm is not defined in space Rn, the regularization is in a general form.
In the general regularization, the weighted generalized inverse solution is used. The
definition 3.3.2 of the best least-square solution can be extended to the following
form:

‖Lx∧
L‖ = inf {‖Lz‖ : z is the least square solution of Kx = y} (3.44)
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Equation (3.44) minimizes the primary problem 3.3.2 with a different norm, called a
semi-norm. The problem of the minimization (3.44) will be well defined (the solution
will exist and will be unique) if the operator L is of appropriate properties [21]. In
the space D (L) with *-inner product, there are unique Moore-Penrose generalized
inverses: of L : D (L) → Z, denoted as L∧

K , and of K : D (L) → Y , denoted as K∧
L .

The operators L and K are bounded with respect to ‖·‖∗ norm. The operators L∧
K

and K∧
L are noticed to be different from the Moore-Penrose inverses of L∧ and K∧

described in the definition 3.3.3 and derived from the original product in X . The
inverses L∧

K and K∧
L are called weighted Moore-Penrose generalized inverses because

they are obtained with the weighted inner product ‖·‖∗.
Important selections of L are those of nontrivial nullspaces, i.e. if L is a differential

operator, L is taken to be the second derivative operator. For the computation
implementation, on account of the calculation efficiency, instead of the operator K∧

L ,
the continues operator B is introduced, defined as B := KL∧

K : Z → Y .
Based on Equation (3.44), the theorem 3.3.1, the definition 3.3.3, substituting in

the projection equation (3.42) PmK for A, and foregoing investigations, the weighted
generalized inverse B∧

A of B is applied:

x = x∧
0 + B∧

Az (3.45)

where x∧
0 is a component of the nullspace of B and z is approximated by:

zα = gα

(
ĀKĀ

)
ĀK b̄, Ā = AB∧

A, b̄ = b−Ax∧
0

zα is called a regularized solution of the standard form problem:

Āz = b̄. (3.46)

3.6.1 Regularization in the finite dimension setting

Tikhonov regularization in the finite dimension setting. In this case, the problem is
transformed to the search for the minimum of the quadratic functional (see Equation
(3.26)):

‖b−Ax‖2
2 + α ‖Bx‖22 = (b−Ax)

T
(b−Ax) + αxT BT Bx (3.47)

where ‖·‖2 is the Euclidean norm and the matrix B estimates the way of the smooth-
ness of x to be consistent with ‖x‖X (the norm of x in space X). According to the
projection scheme (3.42), matrix A and vector b should be selected in the following
way:

‖b−Ax‖ ≈ ‖Pm (y −Kx)‖Y (3.48)

The vector x that minimized the functional (3.47), satisfies the n × n system of
equations: (

AT A + αBT B
)

x = AT b (3.49)

where the matrix B is such that:

‖Bx‖2 ≈ ‖x∗‖X =
∥∥φ1eX

1 + . . . + φneX
n

∥∥
X

(3.50)
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From Equation (3.50) it is seen that the selection of the matrix B equal identity
matrix (B = I) is possible only if the functions φi are the functions for the subset
of piecewise constants and then it is regularization in the standard form. Otherwise,
the regularization is of the general form and the correct norm is expressed with the
Gramian matrix:

G =
[(

eX
i , eX

j

)
X

]
,

∥∥φ1eX
1 + . . . + φneX

n

∥∥2

X
=

n∑

i,j=1

φiφj

(
eX

i , eX
j

)
X

= xT Gx

(3.51)
More details on the Gramian matrix can be found in [21].

Iterative methods in finite dimension space. If regularization is performed to a
different norm in the coefficient space, i.e. B 6= I, taking Equation (3.45) and using
a standard form problem (3.46), the following iteration scheme is obtained:

x(k) = x(k)∧ + B∧
Az(k), z(k) = g(k)

(
(B∧

A)
T

AT AB∧
A

)
(B∧

A)
T

AT b̄

For the Landweber algorithm the iteration of z(k) is given by:

z(k) = z(k−1) + (B∧
A)

T
AT
(

b̄−AB∧
Az(k−1)

)

where k ∈ N, z(0) = 0. After backsubstitution the relation is formed:

x(k) = x(k−1) + B∧
A (B∧

A)
T

AT
(

b−Ax(k−1)
)

, k ∈ N

and x(0) = x∧
0 . It means that regularization is performed with multiplication of the

normal equation system by generalized inverses of B and BT .

3.6.2 Practical aspects and problems

Based on the investigations provided in sections 3.3-3.6, the method (operator) de-
veloped to solve an inverse problem should be proved to be a regularizator in terms of
the theorem 3.5.1 and the definition 3.3.1 of well-posedness. Metal forming modeling
is a complex task since the problems are not stationary and they include mechanical
and thermal phenomena, as presented in section 3.1. In addition, the models involve
phenomenological laws and relations. The problems are solved with numerical meth-
ods, the computations are performed separately for mechanical and thermal models
and the results are interchanged and integrated between the solvers at particular time
steps. These aspects and investigations provided in this chapter are the reason for
which the construction of an inverse operator of thermomechanical metal forming
task is a hard problem.

It was mentioned in section 3.1 that equations of metal forming thermomechanical
problems are solved with finite element methods. Hence, the regularization proce-
dures for finite dimensional spaces, presented in section 3.6.1, are going to be applied.

39



It should be once again highlighted that it is possible to use these algorithms since
the considered problem has a unique solution. In practical applications, the assump-
tion of a unique solution is not true or the information on the number of possible
solutions is not known. Thereby, the classical regularization algorithms listed above
do not assure proper solution. According to the definition 3.3.1 of well-posedness and
the conclusions from this definition, in case when there are more than one solution,
the parameters domain should be narrowed. Such an operation is hard to perform
for real problems. Although the regularization methods are used to hold the stabil-
ity of the identification process, e.g. the Tikhonov functional (3.47), the Landweber
iteration scheme (3.31) or the CGM algorithm (3.34), but there is no confirmation
that the obtained results indeed solved the considered problems. Thus, one of the
approaches is that the minima of the functionals defined in classic regularization
methods are searched with nondeterministic, stochastic optimization algorithms or
the Pareto front is applied to determine the set of solutions [55, 19, 42, 86]. The
question is of the convergence of such an application. Propositions of the stochastic
methods convergence are not trivial, some theorems of these problems are presented
in [5, 40, 102].

Taking into account all the problems listed above and high computational cost
of metal forming solvers, other, alternative methods were looked for to reduce the
number of possible inverse solutions, enhance reliability of the obtained results and
decrease computational costs of the calculations. The methods of sensitivity analysis
were selected to solve these problems. The algorithms of sensitivity analysis are
presented in Chapter 4 and the developed identification strategy and the software in
Chapter 5.



4 Sensitivity analysis

The problem of parameters identification defined as an inverse problem is a kind of
a hard problem due to the lack of a unique solution and high computational costs
(see Chapter 3). In many practical applications the most important issue is to obtain
a solution in a relatively short time. Following that, the supporting algorithms were
looked for to make the inverse calculations more reliable and to decrease the calcula-
tions cost of calculating the inverse problem solving. A wide range of methods, like
data mining, experts systems and the algorithms derived from artificial intelligence,
were browsed and finally the sensitivity analysis techniques were selected as most
suitable.
Sensitivity Analysis (SA) is the field of knowledge investigating the model (mathe-
matical and physical description of the phenomenon under study) behavior for various
input data and model parameters [101]. It determines how the variations of input
data and parameters are distributed on the variations of model outputs and influence
them. A good practice of the numerical modeling is to validate the model and SA
provides techniques enabling this evaluation. The main goals of SA application are:

• verification whether a model simulates the phenomenon under study in a proper
way (e.g. according to physical laws),

• determination of the model parameters which the most contribute to the model
outputs variations,

• identification the parameters which are not significant for the analyzed model
outputs,

• determination the parameters domain of the highest influence of the model
variations,

• estimation of parameters uncertainty,

• verification whether parameters interact with each other,

• for inverse problems:

– verification whether the norm defined in the output space is proper to solve
the defined inverse problem,

– verification whether the goal function in optimization task includes infor-
mation allowing to perform the optimization,

– determination of the parameters identification accuracy,

– reduction of calculation cost of optimization procedure (decrease the num-
ber of direct problem solver evaluations),
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– as the preliminary step - to select the starting point/the first region of
interest or the first population for optimization algorithm,

– in optimization process - to construct hybrid algorithms (e.g. the combi-
nation of an evolutionary algorithm to select local minima and a gradient
method to explore those minima) or modified algorithms (e.g. evolution-
ary procedure enriched with the information about the local sensitivities
[128]) to increase the efficiency of the procedure.

The SA methods are classified using various criteria. One of the possibility is to
group the algorithms with respect to the manner of parameter analysis:

• global methods - they calculate one (global) value expressing the sensitivity of
a parameter for the whole parameter domain; these methods are derived from
statistics and the probability theory,

• local methods [44] - they calculate the sensitivity of a parameter for a small
interval of parameter variation; local sensitivities are defined as the partial
derivatives of a model with respect to the input model parameters.

In the next sections, there are presented algorithms derived from the classical SA
methods which were adopted and next applied to the problems of parameter iden-
tification in the numerical modeling of metal forming processes. The results of the
calculations are presented in Chapter 6.

4.1 Local sensitivity analysis

As was mentioned at the beginning of this chapter, local SA methods estimate param-
eter sensitivity for a narrow interval of the parameter variation. Local sensitivities
are determined by means of the differential analysis. The sensitivity measure in
these methods is derived right from the partial derivative definition calculated for a
model output with respect to a model input parameter. Let us consider the problem
described by the time-dependent equation:

y = y (t, x) (4.1)

where x is the vector of model inputs and parameters, t - time.

The effect of parameter change on the solution at time t can be expressed through
a Taylor series expansion:

y (t, x + ∆x) = y (t, x) +
∑

i

∂y

∂xi
∆xi +

1

2

∑

i

∑

j

∂2y

∂xi∂xj
∆xi∆xj + . . . (4.2)

The partial derivatives ∂y/∂xi are called the first-order local sensitivities,
∂2y

/
∂xi∂xj are called the second-order local sensitivities. The first-order local sen-

sitivities define the sensitivity matrix

S = [sji] =

[
∂yj

∂xi

]
(4.3)
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The sensitivity matrix S in Equation (4.3) is defined for the case when the parameters
are perturbed at the simulation time equal 0, and therefore the initial time of the
sensitivity computation is equal to the initial time of the simulation. In general
case, the initial times of the calculations of the model and the sensitivities differ.
Let us assume that the simulation starts at time 0, the parameters are perturbed in
time t1 and the sensitivities are estimated in t2. Thus, the perturbed solution y′ is
approximated by the double time dependent sensitivity matrix S (t1, t2):

y′ (t2) ≈ y (t1) + S (t1, t2) ∆xt1 (4.4)

The best way to determine the sensitivity matrix S is to perform analytical calcula-
tion. However, the problem description is complex in many cases and such analytical
calculations are not possible. Instead of that, e.g. the finite-difference approximation
scheme is applied:

∂y

∂xi

∼= y (xi + ∆xi)− y (xi)

∆xi
(4.5)

The formula (4.5) is also called the indirect or the brute-force method. The advantage
of this procedure is that no modifications of the original solution are needed, it can be
run for any model. The disadvantage is that there are no guidelines how to determine
the disturbance ∆xi. In many cases, the value of 1% of xi for ∆xi is a good choice,
but it should be estimated precisely, especially for highly non-linear models, to keep
the reliability of the calculations and accuracy. Local sensitivities calculated with the
scheme (4.5) require n+1 model runs, where n is the dimension of the vector x. If the
central differences scheme is applied, the number of the model evaluation increases
to 2n. The procedure is also time consuming.

Another solution is to use the semi-analytical approximation which is the combina-
tion of the finite-difference method and analytical calculations: the model outputs
y are first analytically differentiated while differentiation for the inner functions is
feasible, next, the finite-difference algorithm is applied. The error of approximation
can be reduced in that way.

The elements of a sensitivity matrix (4.3) estimated for various parameters xi are
expressed by the (physical or empirical) units assigned to the parameters xi and the
model outputs y, therefore, the comparison between the coefficients for the sensitivi-
ties of various xi is not permitted. To avoid this problem and to make the sensitivity
coefficients independent of the parameters and the model outputs units, they are
normalized:

Ŝ = [ŝji] =

[
xi

yj

∂yj

∂xi

]
(4.6)

Sensitivity coefficients ŝji represent a relative variation of the model output yj while
the relative change of the parameter xi is introduced to the model.
The practical application of the local sensitivities of the first and the second order:
they are used first of all in gradient optimization algorithms and inverse problems, as
well as in numerical solutions of physical problems [44]. The local methods are not
suitable to compare the effects of more than one parameter at a time. If the model is
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of strong nonlinearity, it is not possible to extend the calculated local parameter sen-
sitivity to other values of the parameter. Moreover, if the sensitivities are estimated
numerically, they can be of high errors. If a large number of the model parameters is
under study, it is difficult to manage the information of the local sensitivities and to
summarize it.

4.1.1 A scheme for semi-analytical sensitivity calculations

The main steps of the sample semi-analytical calculations of the sensitivity matrix S

is presented in this section. Let us consider the thermomechanical problem described
in Chapter 3.1 defined by Equations (3.1)-(3.13). The equations are solved with
the finite element method as a quasi-stationary problem. Thus, the discrete form of
virtual work in every time step t is described as:

W (t)
(

x, u(t), T (t−∆t)
)

= 0 (4.7)

where x is the vector of the identified model parameters, e.g., parameters of the rheo-
logical equation or the friction model, u(t) is velocity vector, T (t−∆t) is temperature.

The inverse problem solved with iteration methods (see Chapter 3.1, section 3.5.2),
is defined as:

min
x∈X

Φ (x) Φ (x) =
∥∥y (x, u, T )− yδ

∥∥2
(4.8)

where X is the space of admissible values of the identified vector x, y and yδ are the
vectors of calculated and measured model outputs, respectively. The functional (4.8)
can be rewritten as:

Φ (x) =
m∑

i=1

wi

[
yi (x)− yδ

i

]2
(4.9)

where m is the dimension of the model outputs space, wi = 1/(yδ
i )2 are weighted

coefficients.
If, to select the minimum of the functional (4.9), the gradient Gauss-Newton itera-

tion method is applied, the iteration scheme is following:

x(k) = x(k−1) − J
(

x(k−1)
) dΦ

dx

(
x(k−1)

)
(4.10)

where
dΦ

dx
= 2

m∑

i=1

wi

(
yi (x) − yδ

i

) dyi

dx
(4.11)

J ≈ 2

m∑

i=1

wi
dyi

dx

[
dyi

dx

]T

where J is the Jacobian matrix of dΦ
dx

with respect to x ignoring the second order
derivatives.
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The algorithm convergence depends on sensitivity of the model outputs y with
respect to the vector x. The sensitivity matrix S = dy

dx
from Equation (4.11) can be

computed with the finite-difference approximation (4.5) or with the semi-analytical
algorithm presented below.

Sensitivity matrix S, from the derivative definition, is expressed by:

S =
dy

dx
= lim

∆→0

y
(
x + ∆x, u(∆), T (∆)

)
− y

(
x, u(t), T (t−∆t)

)

∆x
(4.12)

where

u(∆) = u(t) +
du(t)

dx
∆x, T (∆) = T (t−∆t) +

dT (t−∆t)

dx
∆x

and the velocity derivative du with respect to the vector x, du(t)

x
, is calculated based

on the differentiation of the direct problem (4.7):

dW (t)

dx
=

dW

dx

∣∣∣∣
u

+
∂W

∂x

du(t)

dx
= 0 (4.13)

And from Equation (4.13) one obtains:

du(t)

dx
= −

(
∂W

∂x

)−1
dW

dx

∣∣∣∣
u

= −H−1 (u)
dW

dx

∣∣∣∣
u

(4.14)

where H−1 (u) is inverse of Hessian matrix which is computed while the problem (4.7)
is solved. The partial derivative of W with respect to the vector x, while the velocity
vector u is constant (see Equation (4.14)), are calculated with the finite-difference
scheme (4.5) due to nonlinear equations included vector x. If these equations are
temperature dependent as well, the differential quotient is of the form:

dW

dx

∣∣∣∣
u

= lim
∆→0

W
(
x + ∆x, u(∆), T (∆)

)
−W

(
x + ∆x, u(t), T (t−∆t)

)

∆x
(4.15)

where dT (t−∆t)

dx
is calculated based on the last time step of the heat transfer equation

(3.10) for which the same procedure is applied as for mechanical part of the solution.
The details of the provided semi-analytical approach are presented in [112].

4.1.2 An optimization algorithm enriched with sensitivity analysis

One of the applications of local sensitivity analysis is to include local sensitivities
information into optimization algorithm to accelerate optimization process. The ap-
proach is presented for particle swarm optimization (PSO) procedure.
The original (oPSO) method [41] is based on the mechanisms observed in the nature,
namely on the behavior of the individuals’ population. Particles (identified with the
solutions of the problem considered) traverse the decision space (the area inhabited
by the population) following the particle representing the best hitherto behavior, at
the same time remembering the best position, in which they have been so far. Each
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particle is described by two vectors: the position vector x and the velocity vector v.
In each algorithm iteration, a new velocity vector is determined and the change of the
particle position occurs based on it. Let us assume that the optimization functional
is denoted by Φ. The procedure pseudo code is shown in the algorithm 4.1.

Algorithm 4.1 Particle swarm optimization algorithm (oPSO).

Require:

k ← 0
Rk swarm initialization

1: repeat

2: for i ∈ Rk do

3: compute function Φi

4: end for

5: update the best position xb of Rk

6: for i ∈ Rk do

7: update the best position xi(b) of ith particle
8: determine velocity vector vi(k)

9: determine position vector xi(k)

10: end for

11: k ← k + 1
12: until not stop-condition for Rk

13: return xb

The initialization of the swarm Rk, k = 0, consists in giving the particles a random
position and velocity. The position should be sampled from the permissible area.
The size of this area should be considered when sampling the velocity. If the velocity
is too low, the swarm will not be able to search the entire permissible area; while
excessively high velocity makes, the particles ’bump’ against the limits. The velocity
vector changes according to the relationship:

vi(k+1) = wvi(k) + c1r1

(
xb − xi(k)

)
+ c2r2

(
xi(b) − xi(k)

)
, (4.16)

where xi(k) and vi(k) are the position and the velocity of the ith particle in the kth

iteration, respectively, xb defines the best position found so far by the whole swarm,
xi(b) is the best position found so far by the ith particle, w is defined as the inertia
coefficient; c1 and c2 are acceleration coefficients (called also learning coefficients), r1

and r2 are random numbers from the [0, 1] interval of the uniform distribution. The
new particle position is defined as follows:

xi(k+1) = xi(k) + vi(k+1) (4.17)

After displacement of all the particles to their new position, they are subjected to
assessment and the swarm leader is selected. The determination of the coefficients
values affects the swarm behavior. The value of the inertia coefficient is usually se-
lected from the [0, 1] interval. A higher value is favorable for the global searching for
the solution space, and a lower value for the local searching. Usually, this value is
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constant throughout the entire optimization process. However, it also may change.
Then, at the beginning, it assumes a high value, enabling global searching, and while
approaching the maximum that is sought, it gradually decreases. Acceleration coef-
ficients are usually equal and selected from the [0, 2] interval. When selecting their
values, the maximum velocities, which the particles should not exceed, should be con-
sidered. Exceeding of the maximum number of iterations or obtaining a satisfactory
solution is taken as the criteria of the computation completion (stop criteria).

The oPSO was enriched by local sensitivity analysis. SA allows to apply some
extra information on functional defined in the optimization task which can accelerate
the algorithm convergence. In the modified PSO (mPSO), a correction vector vc

i is
added to the velocity vector vi of ith particle such that the particle moves toward
potentially better areas. A correction vector requires to determine the neighborhood
of ith particle which is defined as:

N i =
{

i ∈ I :
∥∥xi − xj

∥∥ < d
}

(4.18)

where I is a set of all population R indices, d ≥ 0 is the constant describing the
neighborhood. The correction vector vc

i of ith particle is defined as:

vc
i = −

∑

j∈Ni

∥∥Φ
(
xj
)
− Φ

(
xi
)∥∥

‖xj − xi‖2 ·
(
xj − xi

)
(4.19)

In addition, the uncertainty coefficient which describes accuracy of information in-
cluded in the correction vector is determined:

αi =

∑
j∈Ni

∥∥xj − xi
∥∥

|N i| · l (4.20)

where l is length of the decision space diagonal.
Therefore, the velocity vector (4.16) is modified and computed as:

vi(k+1) = w′vi(k) + c′
1r1

(
xb − xi(k)

)
+ c′

2r2

(
xi(b) − xi(k)

)
+ c′

3r3vc
i (4.21)

where vc
i is the correction velocity vector of ith particle, w′ is the inertia coefficient

and c′
1, c′

2, c′
3 are acceleration coefficients modified according to information on the

initial values and sensitivity analysis calculations. The values of these coefficients
depend on the uncertainty coefficient (4.20):

if αi > δ : w′ = w, c′
1 = c1, c′

2 = c2 c′
3 = 0

else w′ = w
√

αi

δ , c′
1 = c1

√
αi

δ , c′
2 = c2

√
αi

δ , c′
3 = c3

(
1−

√
αi

δ

)

where δ is the threshold of the sensitivity analysis activation.
Based on the new velocity vectors of the particles (4.21), the new positions are

determined according to Equation (4.17). The mPSO procedure is presented in the
algorithm (4.2).
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Algorithm 4.2 The particle swarm optimization algorithm + sensitivity analysis
(mPSO).

Require: k ← 0
Rk swarm initialization
d constant describing particles neighborhood
δ threshold for sensitivity analysis activation

1: repeat

2: for i ∈ Rk do

3: compute function Φi

4: end for

5: update the best positionxb of Rk

6: for i ∈ Rk do

7: update the best position xi(b) of ith particle
8: determine neighborhood N i

9: determine correction vector vc
i

10: determine uncertainty coefficient αi

11: determine coefficients w′, c′
1, c′

2, c′
3,

12: determine velocity vector vi(k) according to Equation (4.21)
13: determine position vector xi(k)

14: end for

15: k ← k + 1
16: until not stop-condition for Rk

17: return xb

The mPSO algorithm was tested for benchmark functions. Selected results are pre-
sented below. The effectiveness of oPSO and mPSO was compared for two benchmark
functions: Rastrigin [139] and Rosenbrock [100], the two-dimensional searching space
was limited to the intervals [−1, 1]× [−1, 1] and [0, 2]× [0, 2], respectively. The stop
criterion was solution less than 10−5, the maximum number of function evaluations
was 2000. The results are shown in Table 4.1 and in Figure 4.1.

Table 4.1: Comparison of oPSO and mPSO results.

mPSO oPSO
Function No. of runs Estimation No. of runs Estimation
Rastrigin MIN 440 2.8060×10−7 920 3.0274×10−7

AVE 734 0.0123 1356 0.0243
MAX 2000 0.1225 2000 0.1216

Rosenbrock MIN 340 9.9679×10−8 860 3.0282×10−7

AVE 482 4.1418×10−6 1086 4.2531×10−6

MAX 580 9.1182×10−6 1440 9.4049×10−6

In Figure 4.1 and Table 4.1 it is observed that the function values obtained by mPSO
and oPSO are close to each other for both test functions. However, the number of
function evaluations was much lower for mPSO. On average, that number dropped by
46% for the Rastrigin function and 56% for the Rosenbrock function. Determination
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Figure 4.1: Comparison of oPSO and mPSO results.

of the global minimum or maximum for multimodal functions is never guaranteed,
there is possibility that the optimization result is a local minimum/maximum instead
of the global one. That behavior of the nondeterministic optimization procedure for
multimodal function was tested, as well. The procedures were run 1000 times for the
Rastrigin function. The oPSO algorithm stopped in the local minimum 113 times,
whereas the mPSO stopped 181 times. Following the obtained calculation results, the
mPSO method allows to reduce the number of function evaluation of the optimiza-
tion procedure and reduce computation costs of the optimization but for multimodal
functions the probability of the local minimum or maximum determination is slightly
higher. The details of the investigation are presented in [128].

4.2 Global sensitivity analysis

As distinct from local sensitivities, the global ones estimate the effect of a parameter
described with one quantity for the whole parameter domain. Global SA requires a
definition of the following terms:

• expression which characterizes the measure of model output/outputs (it should
be a scalar value),

• definition of the variation interval for each input parameter,

• selection of the points in the parameters domain (design of experiment tech-
niques are applied),
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• sensitivity measure - the sensitivities are estimated based on the model outputs
measure variations caused by changes in the model parameters.

The first three items are the problems that are independent of the applied global SA
algorithm. The last one, a sensitivity measure, is strictly related to the method.
If the model output is a time-dependent vector y (t), where t is time, the scalar
expression describing the output has to be introduced. The measure can be defined
as:

ỹ =

t2∫

t1

‖y (t)‖dt (4.22)

where ‖·‖ is the norm in the output space, or:

ỹ =

t2∫

t1

‖y (t)− y∗ (t)‖dt (4.23)

where y∗ is the reference point of the model calculated for the selected model con-
ditions and assumptions. The reference point should be close to the best problem
solution or, if such a solution is not known, close to the experimental conditions
(physical, technological ones).
The difference between the measures (4.22) and (4.23) is presented in Figure 4.2.
The next problem is to define the variations intervals for each model parameter. If
the model is not complex and the parameters are directly derived from physical laws,
determination of the extreme points is relatively simple. This problem is non trivial if
the parameters are coefficients of the phenomenological equations and their meaning
is far from the physical background. Expert knowledge is helpful in this case. If the
variation intervals are too narrow or too wide, sensitivity indices estimated with them
can be weighed down with an error and, in consequence, the conclusion drawn with
them will be improper.

Another problem is the selection of the points the model is run for and next, based
on the outputs, sensitivity indices are calculated. There are three main sampling
procedures commonly used:

• random sampling,

• importance sampling,

• Latin hypercube sampling.

To generate the points of the input vector x = [x1, x2, . . . , xn]T , where x ∈ Rn, the
corresponding probability distribution Fi of each component xi of x should be known.

If random sampling is applied, the set of k points is generated as follows:

xj =
[
xj

1, xj
2, . . . , xj

n

]
, j = 1 . . . k (4.24)
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Figure 4.2: Comparison between two model output measures: a) for time-
dependent output vector y, b) for difference between output vector y and the

reference point y∗.

where xj
i component of xj is selected according to the probability distribution Fi and

each point xj is selected independently of all the remaining points.
If more information is known about the input vector x, especially if any subdomain of
x is more interesting, the importance sampling can be useful. In the importance sam-
pling, the variation domain of x is divided into p separable subintervals. Then, for the
l subinterval kl points are generated in consistency with the probability distribution
Fi for each ith component:

xj =
[
xj

1, xj
2, . . . , xj

n

]
, j = 1, 2, . . . ,

p∑

l=1

kl (4.25)

If one value is sampled for each subdomain, the set (4.25) is of the form:

xj =
[
xj

1, xj
2, . . . , xj

n

]
, j = 1, 2, . . . , p (4.26)

An example of the importance sampling is presented in Figure 4.3.
The idea of the coverage the whole input domain in a specific way was extended in

the Latin hypercube sampling [78]. In this procedure the variational interval of each
component xi of x input vector is divided into k subintervals of equal probability
and the next random value is generated from each interval. The k values obtained
for x1 are randomly coupled with k values generated for x2. These k pairs of x1 and
x2 are next combined with randomly selected k values of x3 forming k triples. The
procedure is continued till a set of k n-tuples is generated. The n-tuples are expressed
as:

xj =
[
xj

1, xj
2, . . . , xj

n

]
, j = 1, 2, . . . , k (4.27)
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Figure 4.3: Examples of the importance sampling p = 10 for the input data xi

of the normal probability distribution function Fi and xj of the uniform proba-
bility distribution function Fj , a) equal subintervals probability of 0.1, b) unequal

subintervals probability of f1 = 0.2, f2 = 0.1, f3 = 0.06.

and they constitute the Latin hypercube sampling (LHS). The pairing process is not
unique and many LHSs can be obtained. Examples of LHSs are presented in Figure
4.4.

Figure 4.4: Examples of the Latin hypercube sampling k = 5 for the input
data xi of the normal probability distribution function Fi and xj of the uniform

probability distribution function Fj . Various pairing: plots a) and b).

To control the proper sampling of points in the variation domain, for each component
of the input vector conformity of mean, standard deviation or quantiles plot with its
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probability distribution should be investigated. Random sampling is a method which
is convenient to implement, but it can be applied if the calculation of large number
of model outputs is not of high computational costs. To avoid large sets of points, a
better way is to use importance sampling. However, it is not trivial to determine the
number of subintervals, the start and the end of each subinterval, as well as to estimate
the probability for them. Another solution to reduce the cardinality of the sampling
set is the application of the Latin hypercube sampling technique. This algorithm is
often used to estimate the effect of input parameters defined by mean, conditional
expected value and variation and for unbiased estimations. LHS gives reliable results
if the number of generated points is low. It is also applied for calculations when
information on probability distribution functions of input parameters is not available
and importance sampling cannot be used.

4.2.1 An algorithm based on the Morris design

The term screening design characterizes the method of the input parameters domain
processing. The methods of this group calculate the parameter sensitivities as the
global indices and they search systematically the whole parameters domain - thus,
they are called screening methods. The main idea of these algorithms is to investigate
the model parameters, which have the biggest influence on variability of the model
output, and to keep computational costs as low as possible. The methods deal with
the question which model parameters are really important. The assumption of not
high calculation costs makes these procedures estimate the importance of the input
parameters qualitatively, not quantitatively. i.e. they state that one parameter is
more important than another one. The methods were designed for processes of a
large number of parameters. Identification problems in metal forming include up to
50 parameters, but the computational cost of the problems solvers is often very high.
Following this, screening methods have found practical application in metal forming
problems. Among various procedures, the One-At-a-Time (OAT) approach, originally
developed by Morris [81], was selected. This technique investigates the impact of the
variation of each parameter in turn. The OAT design is called a global sensitivity
analysis, because the algorithm explores the entire space over which the parameters
vary. In the algorithm, the term of parameter main effect is introduced and it is
determined by computing a number of local measures at different points in the input
space and next estimated by mean value and standard deviation. The key definitions
and steps of Morris design are presented below.
Assumptions and definitions. Let x be an n-dimensional vector of model parameters
xi. The primary assumption of the algorithm is that all xi components are defined on
[0, 1] interval. In most practical problems xi components are of various physical units
and the parameters have to be rescaled to [0, 1]. Linear or logarithmic transformation
can be applied. The conversion is necessary to compare the results obtained for
various parameters. It is feasible only if estimated elementary effects are expressed
with the same units for all parameters.
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Let the components xi, i = 1 . . . n, accept k values in the set
{0, 1/(k − 1), 2/(k − 1), . . . , 1}. Then the parameters domain Ω ⊆ Rn forms an n-
dimensional k-level grid. Let ∆ depend on k and describe the side length of the grid
element:

∆ =
1

k − 1
(4.28)

The elementary effect ξi of the ith parameter at a given point x calculated for ỹ model
output is defined as:

ξi(x) :=
ỹ(x1, . . . , xi−1, xi + ∆̃i, xi+1, . . . , xn)− ỹ(x)

∆
(4.29)

where x is any value in the Ω domain such that the perturbed point x+∆ is also in Ω,
∆̃i = ∆ (xi,s − xi,e) and xi,s, xi,e are start and end points of parameter xi variation
interval, respectively. A finite distribution Fi for each parameter xi is obtained by
sampling x in Ω. The number of elements of Fi is equal to (k − 1) kn−1.

Distribution Fi of elementary effects is described by mean µ and standard deviation
σ. A mean characterizes the sensitivity of the model output with respect to
ith parameter . A high mean indicates that the parameter is important and it
substantially influences the output. A high standard deviation implies that the
parameter interacts with other parameters or its effect to the model is nonlinear.

The naive algorithm calculates in sequence r values from distribution Fi of each
parameter xi and in summary there are 2rn solver runs to determine elementary
effects. Another, more effective procedure with the orientation matrix B∗ introduced
to the algorithm was proposed by Morris [81]. The rows of the matrix B∗ represent
input vectors x and n corresponding model runs providing n elementary effects ξi,
one for each parameter xi, are computed for them. Thus, the dimension of the matrix
B∗ is (n + 1)×n. The orientation matrix B∗ is randomly and independently selected
r times. As a result, r (n + 1) model outputs are obtained forming a rn-elements set
of Fi distribution for elementary effects ξi.

Construction of the matrix B∗ is listed in the algorithm 4.3. The algorithm 4.3
returns one orientation matrix B∗ such that every consecutive pair of the generated
vectors - two consecutive rows of B∗, differ for only one component. Any component
i of the starting vector x∗ is increased or decreased by ∆ exactly only once, enabling
calculation of one elementary effect ξi for each parameter xi.

In practical applications, it is convenient to use another algorithm of randomly
selected orientation matrix B∗, presented as the algorithm 4.4.

The algorithm for the estimation of mean µi and standard deviation σi of elementary
effects ξi is printed in the algorithm 4.5.

The mean of elementary effects will be incorrect (underestimated) for the effects
obtained simultaneously with positive and negative signs, therefore, instead of the
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Algorithm 4.3 Construction of orientation matrix B∗

Require: Randomly start vector x∗

Ensure: Each component xi ∈ {0, 1/(k − 1) , . . . , 1−∆}
1: Increase one or more of n components of x∗ with ∆ such that the new vector x(1)

is still in Ω.
2: Calculate elementary effect ξi

(
x(1)

)
following Equation (4.29):

ξi

(
x(1)

)
:=

ỹ(x
(1)

1 , . . . , x
(1)

i−1, x
(1)

i + ∆̃i, x
(1)

i+1, . . . , x
(1)

n )− ỹ(x(1))

∆
(4.30)

if x(1) is increased by ∆̃i, or

ξi

(
x(1)

)
:=

ỹ(x
(1)

1 , . . . , x
(1)

i−1, x
(1)

i − ∆̃i, x
(1)

i+1, . . . , x
(1)

n )− ỹ(x(1))

∆
(4.31)

if x(1) is decreased by ∆̃i.

3: x(2) ← (x
(1)

1 , . . . , x
(1)

i−1, x
(1)

i ± ∆̃i, x
(1)

i+1, . . . , x
(1)

n ). Select the next vector x(3) such

that it differs from x(2) for only one component j: either x
(3)

j = x
(2)

j + ∆̃j or

x
(3)

j = x
(2)

j − ∆̃j and j 6= i. The elementary effect ξj of xj parameter is then

ξi

(
x(2)

)
=

{
ỹ(x(3))−ỹ(x(2))

∆ if ∆ > 0
ỹ(x(2))−ỹ(x(3))

∆ if ∆ < 0
(4.32)

4: Repeat step 3 until n + 1 vectors x(1), x(2), . . ., x(n+1) are produced, forming a
trajectory - one orientation matrix B∗

5: return trajectory x(1), x(2), . . ., x(n+1) - matrix B∗

elementary effect defined as (4.29), the absolute value of ξi is taken:

ξi(x) :=

∣∣∣∣∣
ỹ(x1, . . . , xi−1, xi + ∆̃i, xi+1, . . . , xn)− ỹ(x)

∆

∣∣∣∣∣ (4.34)

The results of the sensitivity of the model output with respect to the input model
parameters expressed as the estimated mean of elementary effects are dependent on
∆ value which is selected arbitrarily. This dependence rises with the non linearity of
the model and the sensitivity calculations may be not reliable. Thus, the calculations
with the Morris design algorithm are performed for various ∆ and next the results
are compared. The comparison is feasible for normalized quantities:

µ̃i =
µi

‖µµµ‖ σ̃i =
σi

‖σσσ‖ (4.35)

where µµµ = (µ1, . . . , µn), σσσ = (σ1, . . . , σn) are vectors of means and standard deviations
calculated for all the input parameters xi, i = 1 . . . , n.

If means and standard deviations computed for various ∆ are close to each other,
the sensitivities are properly estimated. If not, the value of ∆ should be narrowed
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Algorithm 4.4 A randomly selected orientation matrix B∗

Require: Matrix B = (bij) of (n + 1)×n dimension such that bij = 0∨1, i = 1, . . . , n,
j = 1, . . . , n + 1

Ensure: Every two columns of B differ in only one element, e.g. B can be defined
as a strictly lower triangular matrix with values of 1.

1: Build diagonal n dimensional matrix D∗ such that

d∗
ij =

{
±1 i = j with equal probabilty
0 i 6= j

2: Build random permutation matrix P∗ of n×n dimension such that every column
contains one element equal 1 and others equal 0 and there are no two columns
which have values of 1 at the same position. In particular P∗ = I

3: Build the matrix B∗ following the formula:

B∗ = (Jn+1,1x∗ + (∆/2) [(2B− Jn+1,n) D∗ + Jn+1,n]) P∗ (4.33)

where Jn+1,1 and Jn+1,n are matrices with values 1 of dimensions appropriate
(n + 1)× 1 and (n + 1)× n

4: return the orientation matrix B∗ providing a trajectory to calculate a single
elementary effect ξi for parameter xi

Algorithm 4.5 Estimation of mean µ and standard deviation σ

Require: r matrices B∗ generated with algorithm 4.3 or algorithm 4.4
Ensure: Matrices B∗ generated for a different starting point x∗ and provided r

independent different trajectories for all n parameters xi. It is equivalent to r
values of distribution Fi for each parameter xi

1: Estimate mean µi and standard deviation σi for each of xi through the classic
estimators for independent random samples

2: return mean µi and standard deviation σi estimated for each input model pa-
rameter xi

down and the procedure is repeated. Another solution is to define ∆ for each input
parameter separately keeping in mind that the whole interval for each parameter
should be screened (the value of r should be carefully examined).

4.2.2 Variance based methods

This section focuses on the methods of global sensitivity analysis derived from vari-
ance analysis [10, 99]. In particular, two algorithms were selected and presented:
correlation ratio/importance measures [77, 38] and Sobol’ technique [107]. The first
itemized quantities are based on probability distributions and conditional variance of
the model output which indicates the importance of an input parameter. The other
one introduces the first order sensitivity indices that are equivalent to conditional
variance.
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Correlation ratios and importance measures

The measure of the input parameter importance can be expressed as variance of the
conditional expectation (VCE) of model prediction. Let us assume that, with no loss
of generality, there is one input model parameter x and the model output y is scalar.
The importance of the parameter x can be evaluated with conditional probability
distribution of the output y conditioned on x. The marginal distribution of Y is
expressed with the conditional distribution of Y given x:

pY (y) =

∫
pY |x (y|x) pX (x) dx (4.36)

Analyzing Equation (4.36), one can conclude that the parameter x is important if for
the fixed value of x the conditional variance of prediction is significantly reduced on
the marginal prediction variance.
The notation used in Equation (4.36) is convenient because there are no assumptions
of the functional relation between y and x, it can be applied to any model. Thus,
let us consider the general analysis model of the n input parameters gathered in the
vector x defined as:

y = E (Y |x) (4.37)

where E (Y |x) is the conditional expectation.
The prediction variance of Y is of the form:

Var (Y ) = VarX (E (Y |x)) + EX (Var (Y |x)) (4.38)

and
VarX (E (Y |x)) =

∫
(E (Y |x)− E (Y ))

2
px (x) dx

EX (Var (Y |x)) =
∫ ∫

(y − E (Y |x))
2

pY |x (y) dypx (x) dx

E (Y |x) =
∫

ypY |x (y) dy

(4.39)

In Equation (4.38) the first component VarX (E (Y |x)) is the variance of the condi-
tional expectation VCE and the second one EX (Var (Y |x)) is the residual part. The
VCE is the variance of the conditional expectation of Y , conditioned on x and it is a
measure of the importance of x. In particular, if the total variation in y is controlled
by the variability in E (Y |X = x) while x varies, it implies that the vector of the
input parameters x is very important. The residual part in Equation (4.38) measures
extant variability in y of other unobserved inputs while x is fixed.

The correlation ratio introduced by McKay [76] measures the magnitude of VCE in
relation to prediction variance:

η2 =
VarX (E (Y |x))

Var (Y )
(4.40)

Another measure, called the importance measure, was defined in [39] as:

VarX (E (log Y |x))

Var (log Y )
(4.41)
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where E (log Y |x) is estimated using linear regression for numerical robustness. De-
tailed information on the idea of correlation ratio and its extensions are presented
e.g. in [76].

For numerical calculations, the correlation ratio defined in (4.40) for the input pa-
rameter xi considered a random variable Xi, is estimated by a ratio of two estimators:

η̃2 =
ṼCE (Xi)

Ṽar (Y )
(4.42)

where ṼCE (Xi) is the estimator of VarXi
(E (Y |Xi)) and Ṽar (Y ) is the estimator of

Var (Y ). Therefore, the procedures for computation of these estimators are required.

Determination of quantities from Equation (4.42) for the random variables Xi, i =
1, . . . , n, and the corresponding model inputs xi, is performed using r-LHS of size m
with r replicates. An LHS of size m for n model inputs is described with the matrix
D0:

D0 =
[
x1, x2, . . . , xn

]
(4.43)

where xi, i = 1, . . . , n represents an m-dimensional vector of xji values, j = 1, . . . , m,
sampled from intervals of the same probability, and randomized within the positions
in the vector. A D for all r replicates is a r − LHSm matrix of the form:

D =




D1

D2

...
Dr


 (4.44)

where Dk =
[
x̃1,k, x̃2,k, . . . , x̃n,k

]
, k = 1, . . . , n, and x̃i,k is an independent permuta-

tion of the rows of the vector xi defined in Equation (4.43). The model outputs form
the matrix [yjk], j = 1, . . . , m, k = 1, . . . , r (each Dk provides a vector of m outputs
values yk). Now, the estimator of the output variance can be calculated as:

Ṽar (Y ) =
1

mr

m∑

j=1

r∑

k=1

(
yk

j − ȳ
)2

(4.45)

where ȳ is the grand mean equal ȳ = 1
mr

m∑
j=1

r∑
k=1

yk
j .

The variance of conditional expectation can be, as McKay suggested in [76], ex-
pressed by:

ṼCE (Xi) =
1

m

m∑

j=1

(ȳj· − ȳ)− 1

mr2

m∑

j=1

r∑

k=1

(
yj

k,i − ȳj·
)2

(4.46)

where
[
yk,i

j

]
is obtained by fixing m quantities of the ith column, corresponding to

the parameter xi in all r replicates, to the values from the ith column of the matrix

D0, ȳj· = 1
r

r∑
k=1

yk
j are the means calculated for this matrix.
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Finally, the correlation ratio η2 for xi is estimated with Equation (4.42) by inserting
Equations (4.45) and (4.46) into it. After some transformations, the value of η̃2 is
given by:

η̃2
i =

r
m∑

j=1

(ȳj· − ȳ)
2 − 1

r

m∑
j=1

r∑
k=1

(
yk,i

j − ȳj·
)2

m∑
j=1

r∑
k=1

(
yk

j − ȳ
)2

(4.47)

The estimator defined as (4.47) is resistant to bias induced by the sample design, but
its disadvantage is that it produces negative values in some cases. McKay in [77]
proposed another formula for the estimation η2:

η̃2
i,bias =

r
m∑

j=1

(ȳj· − ȳ)
2

m∑
j=1

r∑
k=1

(
yk

j − ȳ
)2

(4.48)

Although the correlation ratio determined with Equation (4.48) includes bias, but by
increasing the number of replicates this problem is mostly solved.
The procedure of computing the estimated values of correlation ratio η2 is listed in
the algorithm 4.6.

Algorithm 4.6 The estimation of correlation ratios η2
i for parameter xi

Require: Matrix D0 of r-LHS of size m defined by (4.43)
1: Generate the design matrix D as described in Equation (4.44)
2: Calculate grand mean ȳ
3: Estimate variance VAR (Y ) with Equation (4.45)
4: for each parameter xi, i = 1 . . . n do

5: Calculate model outputs
[
yk,i

j

]

6: Calculate means ȳj·
7: Estimate η̃2 with Equation (4.47) or (4.48)
8: end for

9: return the estimated correlation ratios η2
i for all the parameters xi

The algorithm 4.6 for calculation of correlation ratios for all input parameters xi

requires rm (n + 1) model runs and it is quite computationally expensive. The algo-
rithm of Sobol’ provided in the next section presents lower computational cost.

Sobol’ method

Sobol’ in [107] developed the method of the global SA based on the variance analysis
and the Monte Carlo algorithm. Let us assume that the domain of the input model
parameters xi, i = 1, . . . , n, is defined as an n-dimensional cube Ω:

Ω = {x : 0 ≤ xi ≤ 1 ∀i = 1, . . . , n} (4.49)
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Let the function y = y (x) represents a model. Sobol’ defined the decomposition of
y (x) as the sum of the increasing dimensionality addends:

y (x1, . . . , xn) = y0+

n∑

i=1

yi (xi)+
∑

1≤i<j≤n

yij (xi, xj)+. . .+y1,2,...,n (x1, . . . , xn) (4.50)

The decomposition (4.50) is held if y0 is constant and the integrals of every addend
over its own variables is zero:

1∫

0

yi1,...is
(xi1 , . . . , xis

) dxik
= 0 ∀k : 1 ≤ k ≤ s (4.51)

From (4.50) and (4.51) it is concluded that all the addends in (4.50) are orthogonal:

∫

Ω

yi1,...is
(xi1 , . . . , xis

) yj1,...jk
(xj1 , . . . , xjk

) dx = 0 ∀ (i1, . . . , is) 6= (j1, . . . , jk)

(4.52)
and

y0 =

∫

Ω

y (x) dx (4.53)

Sobol’ in [107] proved that the decomposition (4.50) is unique and all the decompo-
sition addends can be evaluated as multidimensional integrals:

yi (xi) = −y0 +
1∫
0

. . .
1∫
0

y (x) dx∼i

yij (xi, xj) = −y0 − yi (xi)− yj (xj) +
1∫
0

. . .
1∫
0

y (x) dx∼(ij)

(4.54)

where dx∼i and dx∼(ij) denote integration over all the variables except xi and xi,xj ,
respectively.

Bearing in mind the consideration presented above, the total variance is of the form:

Ṽar =

∫

Ω

y2 (x) dx − y2
0 (4.55)

and partial variances are estimated based on the terms in Equation (4.50):

Ṽari1...is
=

1∫

0

. . .

1∫

0

y2
i1...is

(xi1 . . . xis
) dxi1 . . . xis

(4.56)

where 1 ≤ i1 < . . . < is ≤ n, s = 1, . . . , n. Squared and integrated over Ω Equation
(4.50) gives:
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Ṽar =

n∑

i=1

Ṽari +
∑

1≤i<j≤n

Ṽarij + . . . + Ṽar1,2,...,n (4.57)

Thus, the sensitivity measures Si1...is
are defined by:

Si1...is
=

Ṽari1...is

Ṽar
(4.58)

Si is called the first order sensitivity index for the parameter xi and it measures the
main effect of xi on the model output. Sij , i 6= j, is the second order sensitivity index
and it measures the interacted effect of the two parameters xi and xj on the model
output. The higher order sensitivity indices can be defined in the same way.

The Sobol’s algorithm is listed in the algorithm 4.7. The multidimensional integra-
tion is performed with the Monte Carlo method [22], hence the efficiency of Sobol’s
algorithm depends mostly of efficiency ofthe Monte Carlo procedure.

Algorithm 4.7 Computation of Sobol’ sensitivity indices Si of the first order

Require: Rescaled model input parameters space to n-dimensional unit cube Ω
1: Calculate addend y0 of (4.50) with Equation (4.53)

2: Calculate total variance ṼAR with Equation (4.55)
3: for each input parameter xi, i = 1 . . . n do

4: Calculate partial variance ṼARi with Equation (4.56)
5: Determine the sensitivity index Si according to Equation (4.58)
6: end for

7: return computed sensitivity indices Si for all input parameters xi

4.3 The implementation of sensitivity analysis algorithms

Within the work, sensitivity analysis software was developed and implemented. All
methods presented in this chapter were included in this application.
There are many applications with the implemented methods of sensitivity analysis,
e.g. the commercial one: MATLAB numerical computing environment [75] or
STATISTICA software [110], through plug-ins for Excel worksheet up to many
open-source and shareware applications. The commercial software is dedicated
to a broad multitude of customers and the implemented algorithms include a lot
of options. The second group of programs is dedicated to solve some specific
problems. In both cases it is almost impossible to employ the existing applica-
tions to identification problems in metal forming and to keep the convenience of
computations. Thus, within the work, software for sensitivity analysis was developed.

The application provides the following functionalities:

• local sensitivity algorithm based on the brute-force method: left-handed, right-
handed and central finite-differences schemes are available,
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• algorithms of the global sensitivity methods: Morris design, McKay algorithm,
Sobol’ method,

• sampling algorithms: random, importance, Latin hypercube sampling,

• simple selection of the parameters for analysis,

• interface for communication with inverse problem software,

• definition of new goal functions of inverse problem,

• interface to run external solvers provided as dll libraries or ready-to-run pro-
grams.

The software was implemented in mixed C++ and Fortran languages and it can be
run in both Unix/Linux and Windows systems. The procedures are able to be easily
modified if there are any requirements of the considered problem. Moreover, the
home-made application favors better understanding of the performed computations
and an accurate, more detailed analysis of the obtained results. All the sensitivity
calculations presented in Chapter 6 were performed with the developed software.



5 A strategy for the identification

of the model parameters

The main steps of the numerical modeling of physical phenomena were listed at the
beginning of the Chapter 3. In this chapter the solution of identification problem of
material properties or/and initial and boundary conditions is presented. It is assumed
that the mathematical model describing physical phenomena under consideration is
properly defined and the method of solving the equations of the mathematical model
is well established. The mathematical background and the formal definition of the
identification problem was presented in section 3.3 and numerical solutions for some
specific cases are described in section 3.6. There are still methods dedicated to solving
a large group of problems that are not fully mathematically proved or with some
open questions of the solution properties, as it was mentioned in the last paragraph
Selected practical aspects and problems of section 3.6. Here, in Chapter 5, there is
an attempt to solve such a kind of problems, based on investigated, well established
algorithms aided with the methods of sensitivity analysis presented in Chapter 4.
The combination of the developed procedures allowed to propose the method called
The parameters identification strategy presented in the algorithm 5.1.

The initial step of the algorithm 5.1, called the Require, consists of three items:
(a), (b) and (c). The first one, (a), is the problem description. It includes all the
physical phenomena characterizing the considered problem, x̃ ∈ X represents input
data including the model parameters, K : X → Y is a mapping and y ∈ Y is the
model output. The item (b) is the problem solver. To solve the equations defined in
(a), first an analytical solution is looked for. If it does not exist, numerical methods
are applied. For K - differential operator, the problem is discretized and solved in
the finite dimensional space. Therefore, the solver is denoted as K̃ (x̃) = y, where
vectors x̃ and y belong to the finite dimensional spaces. The last item, (c), involves
physical experiments, which are sources of the data gathered in yδ. The experimental
data are the quantities derived right from physical measurements, not processed. The
problem description from item (a) should be close to the conditions of the performed
experiments to the obtained model output y consistent with the experimental data
yδ.

Statement no. 1 of the algorithm 5.1. The sensitivity analysis (SA) is applied to
the solver in case of a modification of the original model, i.e. introducing new equa-
tions describing material properties and boundary/initial conditions, or extending the
model with equations defining additional phenomena. Then SA is useful in model
calibration and verification if the model outputs are consistent with physical predic-
tions and if changes of the parameters of the newly introduced equations influence
the model outputs (more information on the SA application was presented at the
beginning of the Chapter 4).
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Algorithm 5.1 The parameter identification strategy

Require:

(a) Problem description: Kx̃ = y

(b) Solver of the problem: K̃x̃ = y

(c) Set of the measured quantities yδ

1: Perform sensitivity analysis of the problem solver K̃x̃ = y

2: Determine the set of parameters x to be identified: x̃ = (x, p),

K̃ (x, p) = y

3: Specify the inverse problem K̃∧ (y, p) = x

4: if K̃∧ is a regularizator in terms of the definition 3.4.1 then

5: Determine vector x∗ by solving the equation K̃∧ (yδ, p
)

6: else

7: Define least-square problem of the following form:

K̃∧ := Φ (x, p) =
∥∥∥K̃ (x, p)− yδ

∥∥∥
2

8: Perform sensitivity analysis of the functional Φ with respect to the components
of vector x

9: Estimate the minimum x∗ of the functional Φ with respect to vector x:
Φ (x∗, p) = min

x
Φ (x, p)

10: end if

11: return Vector of identified parameters x∗

Statement no. 2 of the algorithm 5.1. Vector x̃ is composed of two vectors x̃ = (x, p),
where x is the vector of the model parameters/inputs to be identified and p is the
vector of the remaining model inputs. From the results of SA performed in step 1,
there is certainty that the model is sensitive enough to the parameters which are
going to be identified.

Statement no. 3 of the algorithm 5.1. In this step, the inverse task is defined,
especially the inverse operator K̃∧ is constructed according to the guidelines presented
in Chapter 3. It should be highlighted that the construction of the inverse operator
K̃∧ is not a trivial task and for many complex solvers K̃ it is not possible to define
operator K̃∧.

Statement no. 4 of the algorithm 5.1. The form of the inverse operator specified in
step 3 is tested whether it is a regularizator in terms of the definition 3.4.1. If the
condition is true, it is possible to use one of the just developed and well-established
algorithms dedicated to inverse problems. Then, there is certainty that the obtained
solution is unique and proper, and the identification task is solved. Otherwise, step
no. 7 is executed.

Statement no. 7 of the algorithm 5.1. The following attempt is applied - the func-
tional Φ is defined for the inverse operator K̃∧:

Φ (x, p) =
∥∥∥K̃ (x, p)− yδ

∥∥∥
2

(5.1)
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equipped with the Euclidean norm as a rule, but another norm can be used, as well.
Such formulation invokes transformation to the optimization task. Since the solver
of the original problem K̃ is not linear with respect to the vector of the identified
inputs x, there is no guarantee that minimization of the functional Φ will result in
one solution. The problem is not well-posed in the sense of the definition 3.3.1.

Thus, in statement no. 8 of the algorithm 5.1 investigation of the functional Φ with
respect to vector x is performed with the sensitivity analysis methods (presented
in Chapter 4). The SA provides substantial information on the dependence Φ - x

like information on the importance of the parameters (the components of vector x)
in relation to Φ and it allows to select an appropriate optimization approach and
the optimization procedure. The SA results can be used as the input information
for the optimization algorithm (e.g. the elimination of the parameters of the lowest
importance), as the preliminary step of the optimization to generate the start points
or the SA algorithm can be coupled with the optimization procedure to accelerate it.
More applications of SA for optimization are listed at the beginning of Chapter 4.
All these treatments lead to decreasing the complexity of the optimization task and
to increasing the reliability of the solution.

Statement no. 9 of the algorithm 5.1 - optimization. The optimization task can
be defined as a one- or multi- criteria optimization. Nondeterministic algorithms
or deterministic algorithms with multi-start are used as optimization methods to
obtain not one solution (due to the lack of the assumption of a unique solution) but
the vector of the results. Statement no. 11 of the algorithm 5.1. As a result, the
algorithm returns the optimal parameters x∗ of the model.

The developed algorithm 5.1 of the identification strategy was applied to various
problems of metal forming. The obtained results are presented in Chapter 6.



6 Case studies

The chapter provides solutions for the identification problems of metal forming with
the methods presented in Chapters 3 and 4, particularly with the developed algo-
rithm 5.1 of the identification strategy described in Chapter 5. The problems, being
inverse tasks defined for differential partial equations, are ill-posed, as presented in
section 3.3. Therefore, regularization methods are required to estimate their solu-
tions. Regularization for the equation ‖Kx− y‖, where K is an operator between
Hilbert spaces X and Y (see section 3.4), transforms the equation to the Gaussian
normal form (3.23): K∗Kx = K∗y. The approach leads to a minimization problem

of the functional Φ := ‖Kx− y‖2 (the details are included in section 3.5).

The case studies are presented in the order of the performed research and the
development of the sensitivity analysis methods adopted to identification problems
of the modeling of metal forming processes. In the first example, the identification
problem of rheological and friction parameters is considered. That problem was
investigated in the author’s PhD dissertation [133] and next it was continued for
a wide class of rheological equations and various materials. However, the results
were equivocal, many sets of parameters were obtained with the same value of the
optimization functional while the optimization procedures were started from various
points or non-deterministic algorithms were applied. That was the reason for the
search of the methods which would allow to clarify the equivocal observations. The
investigations resulted in the selection of the sensitivity analysis to support the
problem of the parameters identification. Due to the original problem of rheological
or friction identification, the parameters were just estimated, local sensitivity algo-
rithms, presented in Chapter 4, section 4.1, were applied to estimate the importance
of the parameters and to estimate the solution. To search for the minimum of
the functional defined in the identification task, a modified with sensitivity results
non-gradient optimization procedure, gradient algorithms with semi-analytical
sensitivity coefficients (see section 4.1.1) and an enriched non-deterministic method
(see 4.1.2) were used.

A local sensitivity analysis approach is also sufficient for models of not very high
computational costs or in case when sensitivity is considered for small intervals of
the parameter variability. As an example, the identification problem of quantitative
fracture criteria was provided in the case studies. Sensitivity analysis allowed to
estimate the experimental and material parameters which strongly influence the test
and it supported the design of the fracture criterion critical value as the function of
the selected parameters.

In the following years, the application of sensitivity methods to identification
problems of new models included in the simulations of the metal forming processes
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was developed. Therefore, global sensitivity algorithms: screening design methods,
algorithms based on the analysis of variance and Sobol’ algorithm, were studied and
adjusted for the metal forming problems. Their description is provided in Chapter
4, section 4.2. One of the example of the application is the identification problem of
the strain localization model. Global sensitivity algorithms were used to validate the
applicability of the experiment and the selected model responses in the identification
procedure. Another case study is the identification problem of the material phase
transformation model of laminar cooling or annealing, combined with the finite
element method for modeling of the rolling process. These models were applied to
simulate the strip production cycle. Due to a large number of model parameters
and high computational costs, global sensitivity algorithms were applied to identify
the parameters of the highest influence on the model outputs and the functional
defined in the identification task. Sensitivity analysis allowed to reduce the di-
mension of the parameters domain and decrease calculation costs of the identification.

Selected identification case studies and the application of various sensitivity analysis
methods as a supporting tool for the parameter identification procedure are presented
in this chapter.

6.1 Rheological and friction models

The accuracy of the numerical modeling of metal forming processes depends, to a large
extent, on the precise description of material properties and boundary conditions. The
identification of quantities that define the material and boundary conditions during
deformation is a crucial problem to obtain reliable numerical results. Therefore, this
section deals with the problem of the identification of the material plastic properties
and mechanical boundary conditions in the numerical modeling of the metal forming
processes.

6.1.1 Objectives of the work

The main objective of the work was to determine the parameters of rheological and
friction models for:

• cold and hot forming processes,

• various equations describing the flow stress of the material,

• a wide range of plastometric tests.

The computations were carried out with the identification strategy algorithm 5.1
provided in Chapter 5. In the algorithm, the identification task is transformed to
the minimization problem. Thus, an increase in the robustness and efficiency of the
calculations was the next work objective and that attempt was made by:

• a modification of classic non-gradient optimization algorithms with the results
of the local sensitivity analysis performed with the methods presented in 4.1,
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• the application of the gradient optimization method with semi-analytical sensi-
tivity coefficients (see section 4.1.1),

• the development of a two-step identification procedure,

• a modification of the definition of the functional defined in the optimization
task - the application of the multicriterion optimization.

Since the accuracy of the parameters estimation depends on the sensitivity of the
model output to the identified parameters, sensitivity analysis was performed, which
was the next objective of the work. The following calculations were performed:

• sensitivity of the models outputs with respect to the process parameters and
the rheological model parameters,

• sensitivity of the inverse analysis results to the process parameters.

The sensitivity analysis results allowed to estimate suitability of the plastometric
test type for inverse calculations and sensitivity of those calculations with respect to
the process parameters or parameters determined in another experiment. The local
sensitivity procedures described in Chapter 4, section 4.1 were used, considering the
importance of the parameters, and they were investigated close to the point searched
with the optimization algorithms.

This case study is the result of several years’ work on the identification of rheological
and friction model parameters originated from the author’s PhD thesis [133]. The
work was continued and presented in a number of papers, see [120, 29, 118, 117, 96,
124, 125, 126, 131].

6.1.2 The experiments

The first step of the identification algorithm 5.1 is to perform an experiment for
the measured values to compare them to the calculated results obtained from the
numerical model of the experiment ("Require", item c of the algorithm 5.1). The
identification of the material rheological parameters is based on plastometric tests.
Thus, the following plastometric tests are performed: the uniaxial compression of
cylinders (UC), the compression of rings (RC), the plane strain compression (PSC),
the plane strain compression in channel die (PSCc) and the compression of cubes
(CC). A schematic illustration of various types of plastometric tests is presented in
Figure 6.1.

In the presented investigations, two sets of experiments were carried out. The first
set included hot tests for carbon-manganese steel containing 0.16%C, 0.43%Mn,
0.23%Si, 0.006%P, 0.015%S, 0.01%Cr, 0.03%Cu and 0.001%Nb. Three types of tests
were investigated: UC, RC and PSC. Two different dimensions of samples were used
in the PSC tests. All of the tests were performed in the same conditions of strain rate
and temperature: ε̇ = 0.1 s-1, 1 s-1 and 10 s-1 and T = 900oC, 1000oC and 1100oC.
The dimensions of the samples are given in Table 6.1. The width of the platen in
the PSC tests was 10 mm for larger samples (PSC-L) and 5 mm for small samples
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(PSC-S). Graphite foil with a nickel-based lubricant was used in all the hot compres-
sion tests. The tests were performed on the Gleeble 3800 simulator in the Institute
for Ferrous Metallurgy in Gliwice. The second set of experiments included cold tests
for copper. The UC tests were performed on the Gleeble 3800 simulator and on the
INSTRON 4502 testing machine at Akademia Górniczo-Hutnicza in Kraków. The
dimensions of the samples are given in Table 6.2. The strain of 0.8 was reached in all
the tests except for the ring compression tests, where the strain of 0.5 was applied.
The graphite-based paste was used as a lubricant in all the cold compression tests.
Notation in both tables: dout - outer diameter, din - inner diameter, h - height, l -
length (perpendicular to the platen in the PSC and along the channel in the PSCc),
b - width (along the platen in the PSC and perpendicular to the channel in the PSCc).

The load-displacement relationships were recorded during each test, and those data
were used as an input for the identification procedure 5.1. The shape of the samples
after the ring compression and the uniaxial compression were measured, as well,
and that information was an additional input for the evaluation of both friction and
rheological parameters. A detailed description of the experiments is given in [89, 29].

(a) Axisymmetrical compression (AC) (b) Ring compression (RC)

(c) Cube compression (CC)
(d) Plane strain compres-
sion in channel dies (PSCc)

(e) Plane strain compres-
sion (PSC)

Figure 6.1: Schematic illustrations of various types of plastometric tests.

Table 6.1: Dimensions of the hot compression tests samples, mm.

Test dout din h Test h l b
RC 14.0 7.2 4.7 PSC-L 15 20 35
UC 10 - 12 PSC-S 10 15 20

69



Table 6.2: Dimensions of the cold compression tests samples, mm.

Machine Test h b l Test dout din h
Gleeble PSCc_I 8 10 12 UC 12 - 19

PSCc_II 8 10 20 RC_I 14 7 4.69
Instron PSCc_II 8 10 20 RC_II 12 5.9 4

PSCc_III 12 10 16
CC 15 15 15

6.1.3 The numerical model of the plastometric test

One of the assumptions of the identification procedure 5.1, "Require" item b, is that
the model of the experiment is given. The plastometric test is described as a rigid-
plastic thermomechanical problem [46, 90] and the main equations of such a problem
is provided in Chapter 3, section 3.1. The presented partial differential equations are
solved with the finite element method [46, 90]. The friction on the surface sample-
tool was described with the Chen-Kobayashi equation (3.9). The model is used for
the simulation of axisymmetrical compression tests, as well as the plane strain com-
pression tests. The latter, in spite of its name, involves a three-dimensional state of
strains. This is due to some spread in the PSC test (see Figure 6.2). The inclusion of
a 3D finite element solution to the identification procedure is possible [23, 121] but it
requires very long computing times. The computations performed on a middle-class
personal computer take from half a minute to one minute for one axisymmetrical
compression test, while the calculations for the plane-strain compression lasted 10
times longer for one test. 3D computations for one plastometric test are even longer.
One should remember that the time of the simulation depends on the mesh density,
as well. In the research, which composes the identification of a substantial number of
the tests, using the 3D solution was not practical. Therefore, a 2D model was used
for the simulation of the PSC test but corrections proposed in [52] were applied to
obtain good accuracy of the results. The idea of these corrections is explained below.

(a) (b)

Figure 6.2: The plane strain compression sample after deformation, with some
spread seen in the center. The results of the finite element method simulation of

the strain distribution for the initial thickness of (a) 10 mm and (b) 2.5 mm.

The objective of the analysis in [52] was to compare the 2D and 3D simulations of
the PSC tests. Three cases were considered: i) simulation of the PSC tests using the
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2D code, ii) a simulation of the PSC tests using the 3D code, iii) a 3D simulation
of the PSC test with an additional tool which constrained the spread. The friction
coefficient on that additional vertical tool was assumed as zero. There was no heat
exchange between the work-piece and this tool, either. The objective of the last set of
the simulations was to evaluate the reason for the errors in the 2D simulation. These
computations would explain whether the errors are due to neglecting the spread or
due to the differences in the state of stress.
Since the results obtained for different tests were similar, one test only (for the nomi-
nal temperature 1000oC and the strain rate 1-1) is discussed here. Figure 6.3a shows
the loads measured and predicted for the friction coefficient mc = 0.05. It is observed
that, for the selected flow stress function, the loads predicted by the 3D solution
coincide with the experimental results very well. The 2D model overestimates loads
at the beginning of the compression. It is due to the influence of the rigid ends,
which is stronger when the spread is constrained. The predictions of the 2D model
underestimate the loads significantly in the final stage of the process. This is caused
by the fact that the spread is neglected in the 2D solution and the calculated area of
contact is lower than in the real process (symbol ◦ in Figure 6.3a). Thus, the spread
correction for the 2D model was proposed. It is based on the current width of the
sample, which is calculated as [52]:

b = b0

[
1 + C − C

(
h

h0

)0.18
]

, C =

bf

b0
− 1

1−
(

hf

h0

)0.18 (6.1)

where b0 is the initial width, h0 is the initial height, bf is the experimental final width,
hf is the experimental final height, b is the current width, h is the current height, C
is the spread coefficient. When the correction accounting for the spread is introduced
into the 2D data, the results, which are reasonably close to the experiment, are
obtained (the symbol △ in Figure 6.3a). The explanation given above is confirmed
by the results of the simulation using the 3D code for the PSC test with additional
tools preventing the spread (the symbol � in Figure 6.3a). It is seen that these results
are close to those obtained from the 2D solution. It confirms the conclusion that the
differences in the contact area are responsible for underestimating the loads by the
2D model in the final stage of compression.
The calculated distributions of strains in the vertical plane of symmetry for the three
considered simulations are shown in Figure 6.3b. It is seen in this figure that, due to
the spread, the length of the sample is different for the 2D and 3D simulations. The
essential improvement of the agreement between the 2D results and the experimental
data can be obtained when the 2D loads are multiplied by a factor connected with
the spread. This solution with the 2D model will supply the values of the parameters
which can be used as the starting point for further identification using the 3D model.

A similar correction was proposed in [146] for the channel test. The scheme of PSCc
test is shown in Figure 6.4. 2D and 3D simulations of the plane strain compression in
channel dies show that the differences in loads calculated by the two models depend
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(a) (b)

Figure 6.3: (a) Force vs. displacement curves in the PSC test obtained from vari-
ous simulations compared with the experimental data, mc = 0.05, (b) Distribution

of strains in the vertical plane of symmetry for three simulations.

mainly on the friction coefficient and they increase with the progress of the test.
An analysis of all the simulations enables the suggestion for the following correction
coefficient:

ζi = 1 +
mc2∆2

2 + mc1∆1
(6.2)

where ζ is the coefficient which corrects the loads calculated using the 2D model,
mc1 , mc2 are the friction coefficients between the sample and, respectively, the
horizontal and the vertical part of the die. In Equation (6.2) ∆1 and ∆2 are the
shape factors of the deformation zone. The coefficient ∆1 is defined as a ratio
between the length l and the height h of this zone. The coefficient ∆2 is defined as a
ratio between the length l and the width b. The influence of friction depends on the
values of these factors.

To recapitulate this part of the analysis, two-dimensional finite element solutions
were used for the simulations of the plane strain compression tests in the identifi-
cation analysis and the corrections based on Equations (6.1) and (6.2) were used in
the calculations of the loads.

Flow stress models

The flow stress σp is the only material parameter in the flow rule (3.6) which
is a part of the thermomechanical numerical description of the plastometric test
(see section 3.1). The determination of this parameter is the main objective of
these investigations. The selection of the flow stress function is an important
part of the identification procedure because the accuracy of the modeling of metal
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Figure 6.4: A schematic illustration of the plane strain compression in the chan-
nel die (the PSCc test).

forming processes depends on the capability of the selected function to describe the
behavior of the material during deformation. The basic functions define flow stress
as a function of strain, the strain rate and, for hot forming, temperature of the process.

Accounting for the influence of the history of deformation is the next difficulty
faced by the flow stress models. Therefore, relatively complicated functions are often
proposed [18] or more advanced models are developed, such as an internal variable
model [85]. The results of the evaluation of the selected models, regarding their capa-
bilities to describe properly the flow stress, and to determine quantitatively the errors
due to the approximation of the experimental data, are presented below. The general
classification of the flow stress functions is given in [32] and numerous propositions
are available in [31, 50, 32, 37].

Conventional models. The first group of flow stress models are equations in which
flow stress is defined as a function of the three external variables: strain, the strain rate
and temperature. Neither the history of deformation nor the parameters of material
microstructure are accounted for in these models, but they still give reasonably good
results for certain conditions of deformation and they are widely used in simulations
of metal forming processes. For cold forming, the Hollomon function of the flow stress
σp is used:

σp = aεn (6.3)

where ε is strain, a is a parameter, n is sensitivity to strain.
For hot forming, the general function is:

σp = σ0 + aεnε̇m exp

(
Q

RT

)
(6.4)

where a is the hardening coefficient, n is the strain exponent representing sensitivity
to strain, m is the strain rate exponent representing sensitivity to the strain rate, Q
represents sensitivity to temperature, ε is strain, ε̇ is the strain rate, T is the absolute
temperature, R is the universal gas constant.
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As it is shown in Figure 6.5, the function (6.4) is not capable of describing ma-
terial softening during deformation. Such softening can be due to dynamic recrys-
tallization, which occurs at low values of the Zener-Hollomon parameter defined as
Z = ε̇ exp (Q/RT ). Therefore, additional terms are introduced in the function (6.4)
and, in the simplest approach, the flow stress is defined as:

σp = aεnε̇m exp

(
Q

RT

)
exp (−qε) (6.5)

where q is the parameter responsible for softening.
The strain softening is predicted by the function (6.5), but the shape of the curve

(Figure 6.5) differs from the one observed in the experiments. The flow stress drops
after the pick stress is reached. Beyond this, there is not a relation of the softening
term on the Zener-Hollomon parameter and the function predicts softening even at
low temperatures and high strain rates (Figure 6.5a). Therefore, more complicated
functions were developed and the one proposed in [26] is:

σp =
√

3

[
aεn exp

(
Q

RT

)
exp (−qε) + [1− exp (−qε)] asat exp

(
Qsat

RT

)](√
3ε̇
)m

(6.6)
This function has 7 coefficients and is flexible enough to reproduce the shape of the
real flow stress curves. An additional hardening coefficient asat and sensitivity to
temperature Qsat are introduced to enable the dependence of softening on tempera-
ture and the strain rate. The problems occur when flow stress is to be described in
a wide range of values of the Zener-Hollomon parameter Z. A reasonably complex
relation of the pick strain on temperature and the strain rate is not reproduced prop-
erly. Therefore, a more complex function is proposed in [18] and is also analyzed in
[50, 51]:

σp =
(
σss(e) − σ0

) [
1− exp

(
− ε

εr

)] 1
2

−R (6.7)

where:

R =





0 ε ≤ εc

(
σss(e) − σ

)
{

1− exp

[
−
(

ε− εc

εxr − εc

)2
]}

ε ≥ εc

σi =
1

αi
sinh−1

(
Z

Ai

) 1
ni

i ∈ {0, ss(e), ss}

εr = 0.31
[
q1 + q2σ2

ss(e)

]
εxr − εc =

εxs − εc

1.98

εc = Cc

(
Z

σ2
ss(e)

)Nc

εxs − εc = Cx

(
Z

σ2
ss(e)

)Nx

Equation (6.7) has 16 coefficients, therefore, it is difficult for identification. On the
other hand, it has a good predictive capability as far as complex material response
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to deformation has to be described in a wide range of temperatures and strain rates.

Another proposition is the function of the form:

σp = a1εnUm

[
1 + exp

(
−a2

ε− εp

εb

)
− exp

(
−a3

ε

εb

)]
(6.8)

where:
εp = a4U + a5, εb = a6U2 + a7U + a8, U = ln (Z) (6.9)

and m, n, a1 - a8 are parameters.
Equations (6.4)-(6.7) give a general explicit description of the material behavior

during hot deformation. The flow stress σp is calculated as a function of the strain
ε, the strain rate ε̇ and the temperature T . Equation (6.4) is the model for materials
which do not soften during deformation. The parameter m represents sensitivity to
the strain rate and the flow stress decreases with the increasing m for ε̇ < 1 and
increases with the increasing m for ε̇ > 1.

Equations (6.5)-(6.8) enable modeling of the material behavior when dynamical
recrystallization occurs. In Equation (6.5) q is the softening coefficient and the
process of softening depends only on strain, independently of temperature and the
strain rate. Along with an increase in the strain, the flow curve described by the
model (6.5) approaches zero and the parameter q decides about the rate of this
approach. This is a limitation which does not allow to use this function in a wide
range of Z.

Equations (6.6) and (6.7) model the softening during deformation which is dependent
on the temperature and the strain rate (see parameters exp (−qε), asat, exp (Q/RT )
in Equation (6.6)). The terms exp (−qε) and [1− exp (−qε)] asat exp (Qsat/RT ) in
Equation (6.6) control the strain, at which the softening begins, and the rate of this
process. When the term exp (−qε) in Equation (6.6) approaches zero, the stress value
approaches some fixed value. It is not observed for the function (6.5). The function
(6.7) allows to model the variety of materials in a wide range of Z. The main difficulty
in the application of this model is a large number of parameters which have to be
identified.

The internal variable model. Conventional rheological models do not account for
the history of the process. After changing the conditions of deformation the response
of the model moves immediately to the new equation of the state and the flow stress
is a function of new values of external variables. On the other hand, it was observed
experimentally [144] that some metallic materials show delay in the response to the
change of the conditions. This delay is due to microstructural phenomena which
require some time to proceed. Therefore, the rheological models with an internal
variable (IVM) as an independent parameter, to remember the history of deforma-
tion, were developed.
The dislocation density is the main internal variable in the IVM for metallic mate-
rials. The dislocation density can be treated, in the simplest form, as an average
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(a) (b)

Figure 6.5: Plots of the typical flow stress functions for (a) high and (b) low
values of the Zener-Hollomon parameter.

[85] or a probability function describing the distribution of dislocation density can be
introduced [91]. It is obvious that the introduction of more complicated treatment of
the dislocation density leads to an increase in computation costs in the finite element
method used to model the deformation process. Thus, the model with the average
dislocation density, which is adequate for the flow stress predictions, is discussed
below. Since the stress during plastic deformation is governed by the evolution of dis-
location populations, a competition of storage and annihilation of dislocations, which
superimpose in an additive manner, control a hardening. The yield stress accounting
for softening is proportional to the square root of the dislocation density ρd. The
evolution of dislocation populations accounting for restoration processes is given by:

dρd (t)

dt
=

ε̇

bl
− k2ε̇−qρd (t)− k3

D
ρd (t) R [ρd (t)− ρcr] (6.10)

where:

ρcr is the critical dislocation density at the onset of recrystallization, R is a
function defined as:

R [ρd (t)] =

{
0 for ρd ≤ ρcr

ρd (t− tcr) for ρd > ρcr

where tcr is the time at the beginning of dynamic recrystallization, b is the
Burgers vector, D is the average diameter of grain, l is the average free path
for dislocations calculated as l = A0Z−A1 , A0, A1 are coefficients, k2 is the self
diffusion coefficient expressed as k2 = k20 exp (Qs/RT ), Qs is the activation
energy for self-diffusion, k20 is a coefficient, k3 is the grain boundary mobility
described by k3 = k30 exp (Qm/RT ), Qm is the activation energy for the grain
boundary mobility, k30 is a coefficient, q is a coefficient.
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The flow stress σp is defined as:

σp = σ0 + αbµ
√

ρd (6.11)

where σ0 is the stress accounting for elastic deformation, α is a coefficient, µ is the
shear modulus.

The coefficients A0, A1, k20, Qs, q, k30, Qm, σ0 and α have to be determined for a
particular material.

6.1.4 The identification task

According to the algorithm 5.1, statement no. 2 in this investigations, vector x of
identified parameters consists of the flow stress model coefficients or the friction
parameter, vector p defines the process parameters such as temperature, the strain
rate and strain, the sample dimensions, and vector y, the model outputs, contains
information of the loads recorded during the tests and the sample shape after
compression. The inverse problem (statement no. 3) is defined as: to determine
the flow stress and friction parameters based on the measured and calculated loads
during the plastometric test and the sample shape after the test.

Referring to the functional defined by (5.1), the rheological parameters are estimated
by searching for a minimum of the following functional [133, 61]:

Φ (x) =
1

Nt

Nt∑

i=1

1

Nli

Nli∑

j=1

wF
ij

[
F̃ij − Fij (x)

]2

(6.12)

where x is the vector of rheological parameters, Nt is the number of tests performed
for various strain rates and temperatures, Nli

is the number of load measurement
sampling points in the ith test, and F̃ , F are the measured and calculated with
the finite element method loads, wF is weighted coefficient defined as wF = F̃ −2.
The rheological parameters are estimated based on the results of the uniaxial com-
pression (UC), the plane strain compression (PSC) or the ring compression (RC) tests.

Both the friction and the flow stress model parameters are determined from the RC
test and the functional (5.1) is expressed as:

Φ (x) =
1

Nt

Nt∑

i=1





1

Ndi

Ndi∑

j=1

wd
ij

[
d̃ij − dij (x)

]2

+
1

Nli

Nli∑

j=1

wF
ij

[
F̃ij − Fij (x)

]2




(6.13)

where x is the vector of the rheological and friction coefficients, Ndi
is the number

of diameter measurements along the height of the sample in the ith test, d̃, d are the
measured and calculated with the finite element method inner and outer diameters
of the sample after the test, wd is weighted coefficient defined as wd = d̃−2.

(6.14)
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As it was shown in [133, 123], simultaneous determination of both the friction
and the rheological parameters from the ring compression test is possible using
the functional (6.13).

Another approach to determine both the friction and the rheological parameters is
to use the UC test with the functional (5.1) defined as:

Φ (x) =
1

Nt

Nt∑

i=1





1

Nli

Nli∑

j=1

wF
ij

[
F̃ij − Fij (x)

]2

+ wβ
i

[
β̃i − βi (x)

]2



 (6.15)

where β̃, β is the measured and predicted barreling of the sample after the test,
respectively, wβ is weighted coefficient. The barreling of the sample is defined as:

β = 1− Vf

V0
(6.16)

where V0 is the initial volume of the cylinder, Vf is the volume of the cylinder with
the radius equal to the radius of the contact surface and the height equal to the final
height of the sample.

When the friction parameter is identified, RC is the most relevant test. This kind of
a test gives information about the sample shape after compression, which is strongly
sensitive to the friction. Thus, the functional (5.1) is of the following form:

Φ (x) =
1

Nt

Nt∑

i=1

1

Ndi

Ndi∑

j=1

wd
ij [dij − dij (x)]

2
(6.17)

6.1.5 The estimation of the functional minimum

In statement 9 of the identification algorithm 5.1, the functional Φ is minimized with
respect to the identified parameters x. An attempt to increase the robustness of
computations was made and the minimization of Φ was performed with the following
procedures:

• the gradient optimization algorithm with semi-analytical sensitivity coefficients,

• a two-step optimization procedure,

• classic non-gradient optimization algorithms enriched with the results of the
local sensitivity analysis,

• a multi-criterion optimization.

As the gradient optimization procedure, the Gauss-Newton algorithm was used. The
method is not the fastest gradient algorithm, as the Levenberg-Marquardt procedure
is, but the idea was to apply semi-analytical calculations of sensitivity coefficients
instead of the numerical estimation of derivatives. Such computations are possible
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if the source code of the process numerical solver is available. In those investiga-
tions, plastometric tests were simulated with the home-made software [90] and all
the sources files were open to be read and modified. Calculations of semi-analytical
sensitivities were performed with the procedure described in Chapter 4, section 4.1.1.

The remaining optimization methods are described below. To estimate the effi-
ciency of the calculations, the developed algorithms were compared to each other or
to classic optimization procedures.

A two-step optimization procedure

Since the identification calculations are time consuming, a two-step algorithm was
applied [123], which reduces the calculation costs.
Identification calculations - Step I. The first step, which is further referred to as
the preliminary identification analysis (Step I ), performs the optimization for each
available test separately. The input parameters for the optimization are the loads
measured as the function of the tool displacement for a given strain rate and temper-
ature. The simulation of each test is performed only once, therefore, the procedure
does not require long computing times (see algorithm 6.1). During the simulation,
the value of flow stress is determined for each time step of the computation from the
following minimization task:

Φij (a) = wF
ij

[
Fij (a)− F̃ij

]2

(6.18)

min
a

Φij (a) ∀i = 1 . . . Nt ∀j = 1 . . . Nli
(6.19)

where F̃ij , Fij are the measured and calculated loads in the jth time step of the ith

compression test, wF
ij is weighted coefficient. The minimum is searched with respect

to the coefficient a in the following relationship:

σp = aσe (6.20)

where σp is the flow stress used in the finite element model of the compression test,
coefficient a represents the ratio between the real flow stress which gives the minimum
of the function (6.18), and the flow stress σe calculated directly from the experiment
as:

σe =
F

S
(6.21)

where S is the current value of the contact surface. The simulations are performed
assuming the values of the strain rate and the temperature which are nominal for
the tests. Due to inhomogeneity of deformation and due to deformation heating, the
variations of the strain rate and the temperature are accounted for by the introduction
of the following multiplier into the equation describing the flow stress:

σp = aσe

(
Z

Zn

)m

(6.22)
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where Z is the Zener-Hollomon parameter such that Z = ε̇ exp (Q/RT ) and
Zn = ε̇n exp (Q/RTn), ε̇n, Tn are the nominal values of the strain rate and temper-
ature for the selected test, ε̇, T are the current local values of the strain rate and
temperature. The strain rate exponent m and the activation energy Q are calculated
from the measurements of the loads using a simplified graphical method. The
correction using Equation (6.22) accounts only for the variations of the temperatures
and the strain rates from their nominal values for the considered single test. The
minimization procedure with respect to the coefficient a was implemented into the
finite element code [90] of the thermomechanical problem described in Chapter 3,
section 3.1.

Algorithm 6.1 The preliminary step of the identification analysis (step I )

Require:

The measured loads in plastometric tests:
{

F̃ij

}
, i = 1 . . . Nt, j = 1 . . . Nli

Accuracy of computations: δ
1: for all the tests i = 1 . . . Nt do

2: for j = 1 to Nli
{each time step of the FE process simulation} do

3: Set a
4: Calculate Fij

5: Calculate Φij according to Equation (6.18)
6: if Φ > δ then

7: Determine a new value of the parameter a defined in Equation 6.22
8: Goto Step 4
9: else

10: Store εij , σij

11: end if

12: end for

13: end for

14: return Set of the strain-stress values: {εij , σij}, i = 1 . . . Nt, j = 1 . . . Nli

Identification calculations - Step II. A set of the values of strains and stresses,
which represent the real flow stress function, is obtained from the first step of the
identification analysis. The further analysis includes an approximation of the stress-
strain data for all the temperatures and the strain rates (Nt tests). It is performed
using the function σp = σp (ε, ε̇, T, . . .). At this stage, an arbitrary function is used,
but one has to realize that the accuracy of the approximation depends on the ability of
the function to reproduce a complex stress-strain relationship. The coefficients of the
flow stress function determined using the approximation technique are the starting
point for the final identification analysis which is combined with the finite element
simulation of all the tests (Step II ). Since the coefficients estimated in Step I are
close to the optimum solution, the final identification is performed in a reasonably
short time.
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The two-step identification procedure is applicable for the rheological parameters
estimation with the functional (6.12) based on the measurements from UC or PSC
tests. The algorithm and its applications are presented in [117] as well.

The modified classic non-gradient optimization algorithm

The idea of this approach is to use the results of sensitivity analysis to accelerate
the optimization procedure. Although in those investigations sensitivity analysis was
performed after the identification process to estimate the quality of the obtained pa-
rameter values, the identification procedure with the modified optimization algorithm
was run once again to verify if the developed algorithm decreases the computation
costs. The promising results were the basis to investigate such an approach in the
next identification tasks.

The information obtained from sensitivity analysis is included to the optimization
algorithm by customizing the optimization parameters for each identified coefficient
with respect to the results of sensitivity analysis. As an example the optimization
procedure of the simplex method (the Nelder-Mead algorithm [83]) is presented. At
the beginning of this procedure, an initial simplex is generated. Beyond the first
vertex, the simplex is not generated randomly. Next vertexes are determined in the
following way: for the coefficients of the highest sensitivity, the side length is the
shortest and for the coefficients of the lowest sensitivity, the side is the longest. The
second modification is to adjust the procedure parameters. In the simplex method
there are three parameters: reflection, expansion and contraction which are respon-
sible for the selection of vertexes in the next iterations. The default values of these
coefficients are modified based on the information of sensitivity analysis (the rule was
the same as for the initial simplex generation). In Figure 6.6 the calculations results
of the flow stress (6.5) parameter identification problem for various starting simplexes
are presented. The identification was based on the UC test and the functional was
defined by Equation (6.12). It is observed that the simplex procedure supported by
the sensitivity results converges faster than the procedure with the default optimiza-
tion parameters and faster than the algorithm with the values greater than default,
in all the instances.

A multi-criterion optimization

Another formulation of the identification procedure introduces a multi-criterion op-
timization:

min
x

ΦΦΦ (x) = [φ1 (x) , . . . , φi (x) , . . . , φm (x)] (6.23)

where x is the vector of the estimated parameters, ΦΦΦ (x) is the vector of the objectives
φi (x), i = 1 . . . m. The single objective is connected with a single set of experimen-
tally observable traits, e.g. the shape of the sample or the loads. Therefore, one
experiment could provide multiple data sources for the identification procedure. In
the case of the current work, each criterion is defined by Equation (6.12) for Nt =
1, and thus m = Nt. The functional for the minimization procedure is calculated on
the basis of the minimax scalarization strategy:
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Φ = max

(
φi (x)

φmin
i

)
(6.24)

where φmin
i are the minimal values of the objectives, i = 1 . . . m.

This approach allows to reduce the computation costs, especially for an analysis of
a large group of the tests. A more conventional functional is based on the averaging
of the objectives and it is defined as:

Φ =
1

m

m∑

i=1

φi (x) (6.25)

Equation (6.25) is equivalent to the functional (6.12).
The example calculations are presented for the identification problem of the flow

stress (6.8) parameters, the functional expressed by (6.12) and the UC tests. The
simplex method was applied as the optimization procedure. The comparison of the
minimax (6.24) and averaging the (6.25) functionals is shown in Figure 6.7 for m
equal to the number of the tests Nt. For illustrative purposes, the results of the
optimization which was performed with the use of Equation (6.24), were recalculated
to the form of the functional (6.25). More precisely, the recalculated functional is the
functional calculated from Equation (6.25) using the coefficients determined for the
criterion (6.24). The axis on the right side of the plot shows corresponding values of
the functional (6.24). The minimax formulation enables a more steep descent of the
functional, while the final quality of the solution is similar. Therefore, the choice of
a functional can be important for the total computational effort.

Figure 6.6: A functional in the consequent steps of the simplex optimization
procedure for various optimization parameters.
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Figure 6.7: The functional values in the consequent steps of the optimization
procedure with respect to the functional type.

The extended discussion of the application of various optimization techniques is
also given in [116].

6.1.6 The results of the parameter identification

The identification procedure was carried out for all the tests described in section 6.1.2
with the optimization algorithms presented in section 6.1.5 applied to the functionals
(6.12), (6.13), (6.15) or (6.17). The plastometric tests were simulated with a numerical
model provided in section 6.1.3. The selected results are presented below.

Hot tests. Theoretically, any type of compression tests can be used to evaluate the
friction model, but in order to obtain good accuracy of the solution, large sensitivity
of the sample dimensions with respect to the friction is required. This sensitivity
is very small for the spread in the plane strain compression, moreover, an accurate
analysis of the spread requires 3D inverse calculations, which is very costly. Barreling
in the uniaxial compression is more sensitive to friction and a successful attempt
of using the measurements of barreling for the identification of the friction model
is described in [93]. There is a common opinion [73] that the largest sensitivity of
the shape of the sample to friction is observed in the ring compression and this test
was used in the present work for the identification of the friction coefficient. The
identification of the friction coefficient using the functional (6.17) yielded the value
of mc = 0.11, which was used in the identification analysis of all the tests. The
selected example of comparison of the shape of the ring after compression obtained
from the measurements and predicted by the finite element code with the optimized
friction coefficient is shown in Figure 6.8. Due to symmetry, a quarter of the cross
section is presented. A good agreement is seen in this figure. Similar results were
obtained for all the RC tests.
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Figure 6.8: The measured shape of the ring cross section compared to the pre-
diction for the friction coefficient of 0.11.

Parameters of the flow stress model were determined next. Figure 6.9a shows an
example of the flow stress as a function of the strain calculated directly, as a load-
to-contact area ratio, for the all investigated hot compression tests. It is seen in
this figure that significant differences between the flow stress calculated for various
tests or for various sample dimensions appear. Figure 6.9b shows the selected results
obtained after Step I of the two-step optimization procedure for the compression tests
at 1000oC. An analysis of the plots shows that a very good agreement between the
tests is observed for the low strain rate of 0.1 s-1. For the remaining strain rates (1
s-1 and 10 s-1), the largest values of the flow stress are obtained from the uniaxial
compression, intermediate values are obtained from both the plane strain tests and
the lowest values from the ring compression. This tendency is also observed for the
remaining temperatures. However, the discrepancies are larger in lower temperatures.

(a) (b)

Figure 6.9: (a) An example of the flows stress calculated as a function of the
strain directly from the tests as the load-to-contact area ratio, temperature 1000oC
and the strain rate 1 s-1, (b) The flow stress obtained from Step I of the identifi-

cation analysis for all the hot compression tests; temperature 1000oC.
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The difference between the uniaxial compression and the plane strain compression
is small. The flow stress calculated from the ring compression is noticeably lower
than for the remaining tests. The plane strain compression tests for different sample
dimensions yield the values which are close to each other.

The identification procedure was performed for all the flow stress functions (6.4)-
(6.8) and (6.11). Therefore, the two-step optimization algorithm presented in the
section 6.1.5 was applied. The flow stress vs. the strain function given in a tabular
form was determined first and that relationship was approximated using Equations
(6.5)-(6.8) and (6.11).

The computations started from the point, which was obtained from approximation
of the flow stress curves in Figure 6.9b. The values of the coefficients that were
determined by the identification analysis are given in Table 6.3, while the typical
result of the comparison of the values that were obtained from Step I and Step II
of the identification analysis are shown in Figure 6.10b. The plots indicate good
capability of Equation (6.8) to describe the flow stress relationship. The coefficients
obtained from the approximation for the remaining equations, including the value of
the functional (6.12), are given in Table 6.3.

Table 6.3: Coefficients of the flow stress models estimated by the inverse analysis
and the value of the functional.

Eq. a n m Q q asat Qsat Φ
6.4 1.933 0.216 0.16 43236 - - - 0.149
6.5 1.516 0.335 0.156 50723 0.672 - - 0.095
6.6 9.742 0.331 0.155 23838 3.095 0.134 62272 0.079
6.7 A0 n0 α0 Ass(e) nss(e) αss(e) Ass 0.044

0.267× 1013 28.91 0.07 0.11× 1013 4.596 0.011 1.37× 1013

nss αss q1 q2 Cc Nc Cx

8.89 0.013 0.514 0.25× 10−10 0.00015 0.046 0.002
Nx Q

0.324 32610
6.8 a1 n m a2 a3 a4 a5

0.000134 0.348 3.838 2.139 0.957 0.0489 -1.043
a6 a7 a8

0.00214 -0.0779 0.786

The agreement between the measurements and the numerical model calculations
is reasonably good, as it is presented in Figure 6.10a for Equation (6.8). The main
improvement which was achieved in Step II of the analysis, is connected with the
estimation of the parameters εp and εb. The remaining coefficients are close to
those obtained using the approximation of the results of Step I of the analysis. In
particular, the initial estimation of the coefficient m was accurate. This tendency
was observed for all the identification calculations performed in the work. Moreover,
the identified values of the coefficient m were similar (less than 1% difference) for
both the UC and the RC tests.
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(a) (b)

Figure 6.10: (a) Selected examples of the comparison of UC forces: measured
(filled symbols) and computed by numerical model with the flow stress obtained
form the identification analysis (open symbols), (b) Flow stress obtained from Step

I and Step II (Equation (6.8)) of the identification analysis for the UC tests.

The coefficients of the internal variable model obtained from the identification
analysis and the value of the functional are given in Table 6.4.

Table 6.4: Coefficients of the internal variable model obtained from the identifi-
cation analysis and the value of the functional.

A0 A1 k20 Qs q k30 Qm σ0 α Φ
0.0017 0.163 226.4 36328 0.027 0.411 223150 1.06 3.9 0.062

Figure 6.11 shows a comparison of the flow stress obtained from Step I of the
identification procedure with the predictions based on the function (6.7) and on the
internal variable model (6.11). The latter model replicates better the shape of the
curve with dynamic recrystallization, but the average error is larger for this method,
see Table 6.4.

The presented results of the identification analysis show that Equations (6.6) and
(6.7) perform very well as constitutive models in simulations of the typical metal
forming processes. Equation (6.7) gives slightly better accuracy when large range
of temperatures and the strain rates is considered (Table 6.4). On the other hand,
this equation has a lot of parameters and the identification involves larger costs of
computations. The internal variable method is not competitive when accuracy in the
reasonably stable conditions is considered. Beyond this, since it requires a solution
for the differential equation in each Gauss integration point in the finite element
solution, the IVM causes a noticeable increase in the computational costs. It has,
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(a) (b)

Figure 6.11: Experimental flow stress compared with approximations using the
function (6.7) and the internal variable method.

however, a particular ability of accounting for the delay of the material response in the
transient conditions. Thus, this method should be used only for the processes which
involve varying deformation conditions and accounting for the history of deformation
is important.

Cold plastometric tests. The identification procedure of the cold ring compression
test yielded the friction coefficient of 0.067 and this value was used in all the further
simulations. There was not a noticeable influence of the strain rate on the friction
coefficient. All the results of the identification analysis for all the performed tests
are presented in Figure 6.12 in the form of the constant strain rate, isothermal
stress-strain relationships. An analysis of the results of inverse calculations showed
that the flow stresses determined from the CC, RC and UC tests are very close to
each other. The values of the flow stress determined from various PSCc tests coincide,
as well, but they are lower compared to those obtained from the CC, RC and UC tests.

The results of the identification procedure lead to a suggestion that different mech-
anisms are responsible for cold plastic deformation in the two investigated groups of
plastometric tests. In the first group, which is composed of the tests characterized
by the free spread of the material (UC, CC, RC), deformation by slip is dominant.
The plane strain compression (PSC) test can be added to this group. The second
group of the tests, channel tests (PSCc), is characterized by the constraint of metal
flow in one direction. It was observed by a number of researchers, see, for example,
[2, 35, 105], that this constraint involves some softening phenomena which are due
to the initiation of the micro-shear bands in the material. The results of the present
numerical simulations and the identification procedure confirmed the contribution of
these softening phenomena in the PSCc tests.
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Figure 6.12: The flow stress obtained from the inverse analysis for all the cold
compression tests.

6.1.7 Sensitivity analysis

The general objective of the sensitivity analysis is the determination of the influence
of the investigated parameters in modeling on the output parameters which are
observables in the tests. In the work, the sensitivity analysis focused on the two
aspects connected with the identification procedure. The first one is the evaluation
of the importance of the identified parameters in the functional calculations. These
results supply information which is helpful in the selection of the type of the
plastometric test, bearing in mind the fact that large sensitivity of the functional
with respect to the identified parameters is required for good accuracy of the
identification calculations. The second aspect was the evaluation of the sensitivity
of the parameters calculated by the identification procedure with respect to the
assumed process parameters. This analysis supplies information how sensitive the
result of the identification procedure is with respect to the parameters which are
either assumed or determined in another experiment. Sensitivity of the determined
flow stress with respect to the assumed friction coefficient (if friction was not an
identified parameter and the functional (6.12)) was used is an example of this
analysis in the present work. These results allow the evaluation of the accuracy of
the identification procedure.

Since rheological and friction paramters were determined, local sensitivity algorithm
based on the finite-difference approximation scheme presented in the Chapter 4, sec-
tion 4.1, was applied and the local sensitivity matrix Ŝ (4.6) was calculated:

Ŝ = [ŝji] =

[
xi

yj

∂yj

∂xi

]
(6.26)

where yj is one of the model outputs representing the loads or the sample shape,
and xi is one of the rheological parameters from Equations (6.3)-(6.8) or the friction
coefficient.
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Sensitivity of the output parameters with respect to the process parame-

ters and coefficients in the rheological model

For the sensitivity calculations, the model outputs y were defined as the average
load F during the test for all the tests, the barreling β defined by Equation (6.16)
for the UC test and the outer and the inner ring diameter d after the RC test.
These parameters are components of the functionals (6.12), (6.17), (6.13), (6.15).
In the analysis, the sensitivity of the load and the sample dimensions with respect
to the rheological parameters is considered as sensitivity of the functional to these
parameters.

The average load F in the test is calculated as:

F =
1

∆h

∆h∫

0

Fxdx (6.27)

where ∆h is the reduction of the height, Fx is the current value of the load.
The sample dimensions in the sensitivity analysis were the same as in the exper-

iments (Table 6.1). Before the sensitivity analysis was performed, the loads and
barreling were calculated as functions of the rheological parameters and the selected
results for the UC test are presented in Figure 6.13. The parameters m, n and q are
the independent variables in these plots. The presented results supply information
regarding the character of the influence of rheological parameters on the loads and
on the sample dimensions.

It is seen in Figure 6.13 that the effect of the rheological parameters on the load
and on the barreling is complex. Thus, the sensitivity coefficients ŝji are estimated
according to Equation 6.26, where (yj) is a component of y = (d, β, F ), xi is one of
the parameters from Equations (6.3)-(6.8).

The results of the calculations of all the investigated sensitivity coefficients are
demonstrated below. Since the sensitivities vary with varying values of the inde-
pendent parameters, the results are presented for the following basic values of the
parameters: a = 10 MPa, n = 0.3, m= 0.15, Q = 36000 J/mol and q = 0. Notice
that in Equation (6.5) activation energy is not in the Zener-Hollomon parameter
and it is not to power m. In consequence, the values of the activation energy Q in
Equations (6.8) and (6.5) are different, the latter is equal to the former multiplied
by m.

Figure 6.14 shows the comparison of the sensitivity coefficients determined for
various plastometric tests. Sensitivity of the loads was determined for all the tests
(Figure 6.14a) and the results enable the following conclusions. The UC test is the
most sensitive to all the rheological parameters and it should be recommended as
the experiment supplying the data for the identification calculations with the further
application of the results in the simulations of bulk forming. The three remaining
tests show, in general, lower sensitivity. Sensitivity with respect to the softening
coefficient q is larger for the tests involving large plastic deformation, namely the
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PSC of small samples and the UC tests. This sensitivity is low in the RC test
(due to small deformations) and in the PSC of large samples (a reasonably uniform
deformation does not cause large strains). Sensitivity of the diameters of the samples
was determined for the axisymmetrical tests only (Figure 6.14b). It is seen in this
figure that the shape of the sample is not dependent on the rheological parameters,
except some small influence of the strain exponent m and the strain rate exponent
n on the barreling in the UC test. As expected, the shape of the samples after
compression depends mainly on the friction coefficient mc. This effect is, in general,
stronger in the RC test, where two diameters are measured and better accuracy is
expected. This test is correctly recommended as the best test for the determination
of the friction parameter.

(a) (b)

Figure 6.13: (a) Loads and (b) barreling as a function of the strain exponent n,
the strain rate exponent m and the softening coefficient q in the uniaxial compres-

sion test.

Sensitivity analysis was performed for Equation (6.7) of a large number of the
parameters responsible for various phenomena contributing to the overall flow stress,
i.e. hardening, recovery, recrystallization. In this equation, the loads are sensitive to
the activation energy Q and the parameters Nx, αss(e), αss, Cx, and q1 (see Figure
6.16a). What should be emphasized is negligible sensitivity of the loads with respect
to some parameters. It seems that a more detailed analysis of Equation (6.7) may
lead to the simplification and a decrease in the number of parameters, which is an
important advantage in the identification procedure.

The analysis of the internal variable model shows that the parameters describing
the average free path of dislocations (A0, A1), as well as the coefficient α, have the
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(a) (b)

Figure 6.14: (a) Sensitivity of the loads and (b) the sample dimensions with
respect to the rheological parameters and friction in various tests.

Figure 6.15: The shape of the inner and outer surfaces after the cold ring com-
pression calculated for various friction coefficients and measured in the experiment.

strongest influence on the loads. Beyond this, the loads are also sensitive to the
remaining parameters except the coefficient q which introduces the dependence of the
recovery on a strain rate.

A similar analysis was performed for the cold compression tests, assuming m = Q
= q = 0 in Equation (6.5). The calculated sensitivity of the loads and the sample
dimensions with respect to the rheological parameters a and m was similar as in
the hot tests. Sensitivity of the sample shape after compression with respect to the
friction parameter was higher than in the hot tests [97]. Figure 6.15 presents the
shape of the ring after compression calculated for various friction parameters and
measured in the experiment (a quarter of the cross section is shown).

Sensitivity of the identification procedure results to the process parame-

ters

The rheological parameters, the friction parameters and the heat transfer coefficient
can be determined using the identification procedure presented in Chapter 5.
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(a) (b)

Figure 6.16: (a) Sensitivities of the loads with respect to the rheological pa-
rameters in the function (6.7), (b) sensitivities of the loads with respect to the

rheological parameters in the IVM model (6.10).

The problem of the latter coefficient is well discussed in [74, 11, 13, 33] and it is not
investigated in the present work. The current investigations focus on the rheological
and friction models. When the rheological parameters are determined using the
identification procedure, the friction coefficient has to be known. To the contrary,
when the identification of the friction model is performed, the rheological parameters
have to be known. This problem can be solved by using the RC tests and the
functional (6.13), which enables simultaneous determination of both the friction and
rheological parameters [135, 134, 123, 117]. This approach involves larger computing
costs due to a greater number of the parameters which are identified, and it is
common that the identification analysis is applied to estimate either the rheological
or friction parameters separately, assuming that the others are known. Thus, the
objective of this part of the work is to determine how far errors in the evaluation of
the assumed parameters affect the solution. This analysis is divided into two parts.
The effect of the friction parameter on the flow stress determined with the use of the
identification procedure is investigated first. The effect of the rheological parameters
on the friction parameter determined with the use of the identification procedure is
evaluated next.

Figure 6.17a shows a selected example of the flow stress determined by the
identification procedure for various values of the friction parameter in the RC tests.
An influence of the friction is well visible. This influence is lower in the remaining
tests, which can be better observed in Figure 6.17b where sensitivity of the flow
stress at the strain of 0.4 with respect to the friction parameter is shown for all the
tests as a function of this parameter. It can be concluded from this figure that the
flow stress determined by the identification procedure is almost insensitive to friction
in the PSC tests for large samples (PSC_L). This sensitivity is slightly larger for
the PSC of small samples (PSC_S) and the UC test, and the largest sensitivity is
observed for the RC test. The values of the flow stress for the identified friction
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parameter of 0.11 are in the ellipse and they differ slightly between the tests.

Applying local sensitivity coefficient to evaluate the influence of friction on the
flow stress determined from the identification procedure, the following expression was
proposed:

ŝσp,mc
=

mc

σp

∂σp

∂mc
(6.28)

The values of the sensitivity coefficient ŝσp,mc
calculated for various tests for the

friction coefficient mc = 0.11 are shown in Figure 6.18a. It is observed that the flow
stresses obtained from the RC test are the most sensitive to the value of the friction
parameter.

(a) (b)

Figure 6.17: (a) The flow stress determined from the identification analysis for
various values of the friction, (b) the flow stress at the strain of 0.4 determined

from the identification analysis as a function of the friction coefficient.

The analysis of results shows that the sensitivity coefficient is very low for the UC
and PSC tests. Some sensitivity of the result is observed with respect to the exponents
n and m. The results of the identification procedure of the RC test are completely
insensitive to the hardening coefficient a. The RC test is the most sensitive to the
errors in the evaluation of the friction parameter. The UC test is less sensitive to the
errors in the evaluation of the friction parameter and this test should be recommended
as the best one for the identification of the rheological parameters.

Sensitivity of the material flow with respect to the friction coefficient for various
initial dimensions of the ring dout : din : h, where dout is the outer ring diameter, din

is the inner ring diameter, h is the ring height, was investigated as well. The local
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(a) (b)

Figure 6.18: (a) Sensitivity of the friction coefficient, determined with the use of
the identification analysis of the RC tests, with respect to the assumed rheological
parameters of the material, (b) sensitivity of the rheological parameters of the
material, determined with the use of the identification analysis of the RC tests,

with respect to the assumed friction coefficient.

sensitivity coefficient was defined as:

ŝ (x) =
mc

V (x)

dV (x)

dmc
(6.29)

where x =
(
mc, dout, din, h

)
, mc is the friction coefficient and dV is expressed by:

dV (x)

dmc
=

V
(
mc, dout, din, h

)
− V

(
mc + ∆mc, dout, din, h

)

∆mc
(6.30)

and V (x) = V
(
mc, dout, din, h

)
is the volume of the inner hole after the compression

test for the friction mc:

V (x) = π

he∫

0

f2 (z) dz (6.31)

where he is the ring height after the compression, f (z) is the inner diameter in the
function of the ring height after the test.

The sensitivities were calculated for various ratios of dout : din : h presented in Table
6.5. The computations were carried out for various densities of the mesh and for
sufficiently dense meshes there was no impact of the mesh element to the calculation
result. The results are shown in Figure 6.19.

An increase in the ratio of the outer to inner ring diameter reduces sensitivity of the
inner hole shape to the friction parameter. The ratio dout : din equal 6 : 4 gives low
sensitivity to friction, particularly for larger values of this parameter. The friction
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Table 6.5: Initial dimensions of the rings.

dout, mm din, mm h, mm dout : din : h
12 8 4 6:4:2
12 6 2 6:3:1
12 6 5 6:3:2.5
12 6 6 6:3:3
12 4 6 6:2:3
12 4 4 6:2:2
12 4 2 6:2:1

Figure 6.19: The results of sensitivity computations of the inner ring shape with
respect to friction for various initial ring dimensions.

has the greatest impact on the material flow for the rings of a small inner diameter
(din) and a small height (h); however at the higher friction parameters the inner
diameter is close to zero (free flow of the material is not possible), thus the sensitivity
decreases (see Figure 6.19 for the ring of the dimensions dout = 12 mm, din = 4
mm, h = 2 mm). For small friction coefficients, the interpretation of the results is
difficult regardless of the initial dimensions of the ring. The detailed results of this
investigations are provided in [112].

6.1.8 Discussion of the results

Sensitivity analysis and the identification procedure applied to various compression
tests and a wide range of the flow stress equations allow to draw the following con-
clusions:

• The developed method, the identification procedure presented in Chapter 5,
combining the optimization task with the local sensitivity analysis application
presented in section 4.1, is a powerful tool for the interpretation of the plas-
tometric test results independently of the type of the machine, a lubricant,
a method of heating and other experiment parameters out of control. This
approach guaranties that the obtained values of the material and the process
parameters are very close to the real ones.
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• The identification procedure gives the results, which are insensitive to the size of
the sample. The lack of sensitivity to the method of testing is observed for the
tests which do not constrain the flow of the material in the transverse direction.

• Functions commonly used as rheological models give, in general, good results for
the processes with reasonably stable conditions. More complex functions, with
a larger number of coefficients, give slightly better approximation compared to
the simple equations with a smaller number of parameters. Sensitivity analysis
has shown that in more complicated functions some of the parameters show
a small influence on the flow stress predictions. It seems that these functions
should be further explored regarding a possibility of obtaining a simpler but
still accurate form.

• Loads predicted by the finite element method simulation are the most sensitive
to the activation energy and then subsequently to the hardening coefficient, the
strain rate exponent, the strain exponent, the softening parameter. The lowest
sensitivity is observed with respect to the friction parameter.

• The flow of the material, in this analysis represented by the shape of the rings
after compression, is almost not sensitive to the rheological parameters. As
expected, sensitivity is observed with respect to the friction parameter. The
inner diameter is much more sensitive to the changes of this parameter than
the outer diameter.

• The flow stress determined from the identification procedure of the UC and PSC
tests is not sensitive to the assumption of the friction parameter. The flow stress
determined from the identification procedure of the RC and RSC test is slightly
more sensitive to the assumed friction. It means that the exact evaluation of the
friction parameter is not crucial for the accuracy of the identification procedure.

• The analysis shows that the loads are most sensitive to the rheological param-
eters in the UC test and the shape of the sample is most sensitive to friction in
the RC test.

• The developed modified optimization algorithms applied to the identification
procedure reduces the computation costs.

• The local sensitivity analysis allows to estimate the error of the identified pa-
rameters.

6.2 A quantitative fracture criterion

Fracture is a phenomenon occurring not seldom during the material deformation in
metal forming processes. The formulation of the quantitative fracture criterion [87]
for the materials subjected to plastic deformation is essential for the modeling of
forming processes for the materials characterized by low plasticity. In order to avoid
fracture during forming, it is necessary to determine precisely the material crack
resistance and to use this knowledge to design the process technological parameters
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which prevent fracture. The criteria based on the information on stress and the strain
history, which are commonly used [87, 16], give relatively good qualitative results but
the quantitative accuracy is often insufficient. It is generally due to difficulties with
the determination of the material parameters in the fracture criteria. The problem
of formulating a complex criterion which gives qualitatively good results is still open.
In this work, the phenomena described with the fracture criteria containing the pa-
rameters characterizing the fracture of a particular material is considered. Thus, the
fracture criterion is a material model which requires identification. According to the
identification strategy algorithm presented in Chapter 5, the measured data is neces-
sary to perform an identification. The Strain Induced Crack Opening (SICO) test is
commonly used to supply data for identification. Therefore, the present section deals
with an analysis of the SICO test in the aspect of the identification of the fracture
criteria parameters.

6.2.1 Objectives of the work

The main goal of the investigations was the determination of sensitivity of the fracture
criterion with respect to:

• the SICO test parameters: temperature, the die velocity,

• the material parameters: the strain rate sensitivity, the hardening coefficient,
the hardening exponent and the temperature sensitivity coefficient.

The objective was to determine to what extent the value of the fracture criterion
changes with the change in the SICO test parameters and the material plastic prop-
erties. Since the SICO test was performed for the reference parameters of this test
[141], the local sensitivity algorithms provided in Chapter 4, section 4.1, were ap-
plied. The results contributed to design the critical value of the fracture criterion
in the function of the test and the material parameters of the highest impact to the
test. The critical fracture value is responsible for the initiation of the fracture pro-
cess; thus, it is a very important parameter in the process modeling and avoiding the
fracture. The details of the investigations are presented also in [142].

6.2.2 The experiment

The SICO test [58, 6] is commonly used to determine a tendency of materials to
fracture during hot forming. The test is a hot workability technique with good repro-
ducibility and possibility to employ large strains. The SICO test is divided into two
stages: the resistance heating of the sample to get an appropriate temperature field,
and upsetting until the fracture appearance. This fracture appearance, expressed
as the value of the circumferential strain, is an observable data in the test. The
schematic view of the sample and the real samples are shown in Figure 6.20.

In those investigations, the test conditions were as follows. The dimensions of the
sample were 10×86.4 mm. The chemical composition of the carbon-manganese steel
was 0.21% C, 1.32% Mn, 0.23% Si, 0.2% Cu. The sample heating rate was 5oC/s for
about 230 s, the stroke during upsetting was 16 mm, the die velocity was equal to 90

97



mm/s, the test temperature was 1050oC. The circumferential strain in the analyzed
SICO test was equal to 0.65.

(a)

(b)

Figure 6.20: The SICO test: (a) view of the tools and the sample, (b) the
samples after compression [142].

6.2.3 A numerical model of the SICO test

The identification procedure 5.1 requires to express a numerical model of a process
- the SICO test. Due to inhomogeneities of the temperature, stress and strain
fields in the test, the quantitative interpretation of the SICO test produces certain
problems [58]. Therefore, the experiment was defined as a thermomechanical problem
described with the equations provided in Chapter 3, section 3.1 and solved with the
finite element method. Such an approach reflects the inhomogeneity of the strains,
stresses and temperatures.

In the work, the experiment described in section 6.2.2 was reproduced. The heat
transfer coefficient for the tool-workpiece interface was assumed at 20 kW/m2K
for the high pressure contact and 10 kW/m2K for the sides of the sample. The
temperature distribution at the cross section after the test is presented in Figure 6.21.

The material properties were described with the flow stress equation (6.4) dedicated
to hot forming and for the investigated steel the parameters were equal to a = 4.7,
n = 0.212, m = 0.139, Q = 31020 J/mol.

The process was simulated to the moment when the fracture occurred. The compu-
tation time of one test was approximately more than a dozen minutes.

The fracture criteria

Within the work the capability of various fracture criteria: Latham&Cockcroft, nor-
malized Latham&Cockcroft [16] and Oyane [87], were tested. The criteria are based
on the assumption that the fracture occurs when the integral of stresses with respect
to strain exceeds the limiting value, called the critical value, C.
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Figure 6.21: The temperature distribution at the cross section after the SICO
test, Celsius degrees are presented in the scale.

• The Latham&Cockcroft criterion:

χLC =

ε
i
(t)∫

0

σ1dεi(t) ≥ C (6.32)

• The normalized Latham&Cockcroft criterion:

χnLC =

ε
i
(t)∫

0

σ1

σi

dεi(t) ≥ C (6.33)

• The Oyane criterion:

χOyane =

εi(t)∫

0

(
1 + A

σ
h

σi

)
dεi(t) ≥ C (6.34)

where εi is the effective strain, σh is the hydrostatic stress, σi is the effective
stress, σ1 is the maximum principal stress, C is the critical value of integral, A
is the constant.

The criteria (6.32)-(6.34) were implemented into the finite element code and pre-
dicting a fracture was possible.

6.2.4 Sensitivity analysis

In the identification algorithm 5.1, statement no. 1, sensitivity analysis is applied
in case of introducing new models to the process model. Since the goal of the work
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was to design a function describing the critical value of the fracture and the fracture
criteria were involved in the thermomechanical model dedicated to the SICO test as
new equations, that statement of the identification algorithm was performed with
the local sensitivity methods presented in Chapter 4, section 4.1.

The objective of the sensitivity analysis was evaluation how sensitive the parameters
in various fracture criteria (6.32)-(6.34) were with respect to the SICO test parameters
and to the material parameters. The independent parameters of the process in the
analysis were:

• the temperature at the moment of the fracture (T ),

• the die velocity (v),

The parameters describing the material properties in Equation (6.4) were:

• the hardening coefficient (a),

• the hardening exponent (n),

• the strain rate sensitivity (m),

• the temperature sensitivity coefficient (Q).

In the analysis, each fracture criterion was calculated as the maximum value χi of
that criterion in the volume of the sample:

χmax
i = max

V
χi i ∈ {Oyane, LC, nLC} (6.35)

Local sensitivity coefficients ŝij , using the finite-difference approximation scheme
(4.5), were estimated as:

ŝij =
xave

j

χavemax

i

χmax
i (xj + ∆xj)− χmax

i (xj)

∆xj
(6.36)

where xj is a component of the process parameter vector x = (T, v, a, n, m, Q) in
turn, i ∈ {Oyane, LC, nLC} is the value of ith fracture criterion calculated for the
parameter xj , δ ∈ (0, 1) is a small perturbation. The superscript ave indicates the
average value of the parameter.

Calculations were performed for various values of the temperature T ∈
(950− 1200oC), the velocity of die v ∈ (30, 220) mm/s, the hardening coefficient
a ∈ (2.5, 6.5), the hardening exponent n ∈ (0.1, 0.3), the strain rate sensitivity
m ∈ (0.08, 0.2), the temperature sensitivity coefficient Q ∈ (30000, 38000) J/mol.

Due to the idea of the sensitivity analysis, those investigations were to determine
the process and material parameters of the highest impact to the fracture initiation,
the sensitivity coefficient ŝij was introduced and it was calculated as the average from

the absolute values of the ith fracture criterion:

ŝij =
1

Nj

Nj∑

j=1

|ŝij | (6.37)
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where Nj is the number of sensitivity calculations for the parameter xj .
The results of calculations of the sensitivity coefficients are presented in Figure 6.22.

Figure 6.22: Sensitivity of fracture criteria with respect to various parameters.

6.2.5 Discussion of the results

The analysis of the sensitivity calculation results provides information regarding the
importance of various parameters in the SICO tests. It is seen in Figure 6.22 that
the Latham&Cockroft criterion is more sensitive than other fracture criteria to the
process conditions and the material properties. The maximal sensitivity is observed
with respect to the temperature T , the hardening coefficient a and the temperature
sensitivity coefficient Q. Slightly lower sensitivity is observed for the strain exponent n
and the die velocity v. Finally, it can be also concluded that the fracture criteria value
is much less sensitive to changes of the die velocity and to the hardening exponent.

The conclusion from the sensitivity analysis is that in the identification procedure
of the SICO test, more accurate quantitative predictions of fracture initiation can be
obtained when the critical value C is introduced into the numerical model of the SICO
test as a function of the process and the material parameters. Thus, the suggestion is
made that the critical value of the criterion should be a function of the temperature,
the hardening coefficient, the temperature sensitivity coefficient and the strain rate
sensitivity. The effect of the die velocity and the hardening exponent is negligible.
The strain exponent can be added to the list of the independent variables, as well.
The investigations of the SICO test were continued and they were the main objective
of the work [140]. The function describing the critical value of fracture initiation was
developed and it was implemented into the finite element code for the SICO test and
the selected forging operation simulations. Values of fracture criteria were estimated
for the circumferential strain determined in the analyzed SICO test based on the
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algorithm 5.1. Evaluation of the sensitivity provided the information which made the
identification procedure more efficient. The results of the identification are presented
in details in the work [140].

6.3 The strain localization model

The accuracy of materials processing simulations depends on the quality of the de-
scription of the phenomena occurring during deformation. Rheological models usually
treat material as a continuum and are unable to describe properly several important
phenomena which may be either random or discontinuous or even both. Therefore,
there is a continuous search for alternative models, which account for non-continuous
structure of materials and for the fact, that various phenomena in materials occur on
a various scale. Accounting for the stochastic character of the phenomena is an addi-
tional challenge. Multiscale models, see, e.g., [1, 17], are one of the solutions capable
to overcome the mentioned difficulties. Over the last decade, multiscale modeling
techniques have become very popular. The problem of identifying the parameters of
such a model is discussed in this section.

6.3.1 Objectives of the work

Multiscale models based on the combination of the Finite Element (FE) and the
Cellular Automata (CA) method are designed to describe the development of the
strain localization during material processing [1, 64]. Numerical tests confirmed a
qualitatively good predictive capability of the model. The problem of quantitative
accuracy still remains open. To reach the accuracy, the values of the coefficients
in the transition rules of the CAFE model have to be determined on the basis of
the experimental data. It is expected that the identification procedure developed in
Chapter 5 will be an efficient method to identify these parameters.

Those investigations were the first attempt to identify the CAFE model parameters.
Therefore, according to the statement no. 1 of the identification algorithm 5.1, the
sensitivity analysis of the model was performed. Since the calculations performed with
the CAFE model are time consuming, the sensitivity analysis was based on the Morris
method presented in Chapter 4, section 4.2.1. This is a screening design technique
which searches the whole parameter domain in a computation cost-effective way. The
objectives of the work were to perform the sensitivity analysis, to identify the key
parameters of the model, to determine their influence on the model response and to
formulate guidelines for the further identification of the CAFE model parameters.
The details of the investigation are presented in [119, 66].

6.3.2 The experiment

The process that was considered as a case study was a simple shearing test presented
in Figure 6.23. The selected material was oxygen-free high thermal conductivity
copper deformed at the room temperature. The strain localization phenomena for
that material and the shearing test are experimentally well investigated, which was
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the reason for selecting them in the present work for validation and identification of
the numerical modeling.

Figure 6.23: A simple shearing test with a rectangular sample.

6.3.3 The numerical model of a shearing test

A simple shearing test is defined as a multiscale problem which accounts for the
phenomena that occur on a different scale in the material. In the macro-scale, the
material is the continuum, and the process is described as a thermomechanical
problem expressed with the equations presented in Chapter 3, section 3.1. The
equations are solved with the finite element method. Micro shear bands initiate and
propagate in the microscale and they are modeled in the micro-scale with the cellular
automata approach. The cellular automata model is introduced and attached to
the finite element model of the shearing test and multiscale (CAFE) modeling is
performed. One multi-scale simulation of the shearing test takes approximately a
dozen of minutes. The general ideal of the multiscale approach is presented in Figure
6.24.

Figure 6.24: The CAFE model scheme.

In the CAFE model, the micro shear band (MSB) is defined by several state
variables that describe each particular cell, as well as by a set of transition rules.
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Transition rules provide information when a CA cell can change its state and become
a cell with micro shear bands (activeMSB). Transition rules are usually logical
functions, which are used to replicate mechanisms leading to the initiation of micro
shear bands and next shear bands that are observed experimentally [49, 15]. When
the transition rule for a particular cell is fulfilled, the cell changes its activeMSB
state, if not the state of the cell remains unchanged. A detailed description of the
developed model regarding the state of the cells and transition rules is presented in
the works [64, 65, 63]. Below, the main assumptions of the model are presented.

The flow of the information between the scales is performed in both directions, from
the macro-scale to the micro-scale, as well as from the micro-scale to the macro-
scale. In each time increment of numerical modeling, the information about the
stress tensor is sent from the finite element solver to the MSB cellular automata,
where development of the micro shear bands is calculated according to transition
rules. Based on the information supplied by the cellular automata, the flow stress σp

is calculated and it is used in the finite element model during the next step of the
finite element calculations.

One of the most important function of the model is the function that controls
distribution of one of the internal variables for the MSB among the cells. The Gauss
function was selected to model that phenomena, where the critical value for the
initiation of the hard slip system, τ∗

max, is a controlled variable described by:

τ∗
max =

1

σdev

√
2π

exp

(
−

µ2

2σ2
dev

)
(6.38)

where µ is the expected value, σdev is the standard deviation.
Due to that, the work was focused on the validation of the CA model, in particular,

on the verification which parameters of the model were of importance in forming micro
shear bands. Two parameters of the Gauss distribution function were considered as
independent stochastic variables in the analysis. One was the expected value µ and
the standard deviation σdev was the other one. In the CAFE model, the values of
τ∗

max are generated using the right hand side of Equation (6.38) and they are main
parameters which control the initiation of the micro shear bands in the MSB space.

6.3.4 Sensitivity analysis

The CAFE model is time consuming; therefore, for sensitivity analysis of the CAFE
model, the Morris design algorithm was selected which is provided in Chapter 4, sec-
tion 4.2.1. Three parameters were selected to the analysis: two parameters of the
cellular automata module - as the crucial parameters in the micro shear bands devel-
opment (see Equation (6.38)) and friction coefficient m that characterizes specimen-
tool contact properties implemented in the finite element model of the macro-scale.
The vector x containing the parameters is in the following form:

x =
(
µ, σdev, m

)
(6.39)
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where µ and σdev are the expected value and the standard deviation in Equation
(6.38), m is the friction coefficient. The space of acceptable values for the components
of vector x was defined as: µ ∈ [200, 500] MPa, σdev ∈ [10, 300] MPa, m ∈ [0, 0.80].

The distribution of the strain values along the profile line at the fixed time of the
process is analyzed to estimate sensitivity (see Figure 6.25). The strain profile was
divided into two regions in such a way that characteristic picks were observed. The
output of the model was defined as the sum of the two relative strain picks:

y (x) = β1y1 (x) + β2y2 (x) (6.40)

where β1, β2 are weighted coefficients such that β1 + β2 = 1 and for the calculations
in the work those coefficients were assumed as β1 = β2 = 0.5 which means similar
significance of both strain picks, yi (x), i = 1, 2, is a relative strain pick, given by the
formula:

yi (x) =
εmax

i (x)− εmin
i (x)

εmax
i (x)

i = 1, 2 (6.41)

where εmax
i , εmin

i , i = 1, 2, the maximum and the minimum of the strain along the
fixed line for the first and the second strain region, respectively.

(a) µ=200MPa, σdev=300MPa,
m=0

(b) µ=400MPa, σdev=107MPa,
m=0

(c) µ=400MPa, σdev=107MPa,
m=0.53

Figure 6.25: Examples of the strain distribution field obtained from the CAFE
model with different input parameters.

According to Morris algorithms, each component of the x vector was rescaled to the
interval [0, 1]. The parameters of the algorithm were setup as follows: the number
of the analyzed parameters n = 3, the number that characterizes the division of the
unit interval k = 4, the number of independent trajectories r = 5. The results of
the sensitivity calculations are presented in Figure 6.26. Distributions Fi for the
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parameters of the vector x are shown in Figures 6.26a - 6.26c, and means in function
of standard deviations of elementary effects are presented in Figure 6.26b.

(a) expected value µ (b) σdev standard deviation

(c) friction coefficient m
(d) mean vs. standard deviation

(Morris algorithm)

Figure 6.26: Distribution Fi of the elementary effects ξi (x) and estimated mean
and standard deviation of the effects for the parameters of shearing test.

The elementary effects of the expected value µ (Figure 6.26a) vary from 0.05 to
0.66. The highest values are obtained for the conditions of the process while the
fraction of the shear bands in the deformation is significantly independent of contact
properties (the friction coefficient) - see trajectories 1 and 3. The elementary effects
of the standard deviation σdev (Figure 6.26b) vary from 0.07 to 0.18. If the values
of the standard deviation are high, the output of the model is not sensitive to this
parameter (trajectories 1 and 5) or the response is weak (trajectories 3 and 4). The
elementary effects of the friction coefficient m (Figure 6.26c) vary from 0.07 to 0.31.
The distribution is uniform, except the trajectory 3 while the fraction of shear bands in
the deformed specimen is very high. The analysis of the mean values (Figure 6.26d)
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proved that the model response is the most sensitive to the expected value µ, the
friction coefficient m controls the process to a minor extent, and the influence of the
standard deviation σdev is weak. Standard deviations (Figure 6.26d) of the considered
parameters show that the expected value µ with the highest value interacts with other
parameters (the standard deviation σdev and the friction coefficient m) or its effect
is nonlinear.

6.3.5 Discussion of the results

The application of the shearing test, where the material flow is highly constrained,
provides valuable data for the sensitivity analysis. The Morris algorithm of the screen-
ing design applied to the sensitivity analysis of the CAFE model highlighted the model
parameters with the most important overall influence on the output. The main ad-
vantage of the Morris algorithm are the relatively low costs of calculations. This
feature of the method is desirable due to excessive time of the CAFE simulation of
complex deformation processes. As presented, the influence of the standard deviation
is very small, that is why during further research the investigation of additional pa-
rameters that are present in the transition rules have to be considered. As expected,
the value of µ is most significant and this value has to be identified very precisely to
describe the real behavior of the material properly. The obtained results are helpful
in the identification procedure to estimate the model parameters and to predict the
material behavior during the process with higher accuracy. Some examples of the
identification parameters for selected materials are provided in the work [63].

6.4 The phase transformation model for the design of laminar

cooling and continuous annealing of steels

As it was mentioned in section 6.3, the accuracy of the modeling of metal forming
processes depends, to a large extent, on properly defined phenomena which occur
during the deformation. While predicting the product microstructure and properties
is required, phase transformation models have to be included in the modeling. There-
fore, a phase transformation model was selected as the next example of the sensitivity
analysis and the identification procedure in the present work.

A large number of phase transformation models are available in the literature, from
the simplest ones based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation
[4] through more advanced models based on the phase field [106] or a solution of
differential equation [111] to discrete models based on the Cellular Automata method
[59]. All these models are characterized by various complexity of the mathemati-
cal formulation and various predictive capabilities. Two aspects decide about the
accuracy and effectiveness of the phase transformation modeling: the selection of a
relevant model for a particular application and correct identification of the model
parameters. In metals processing, the problem of identification of models using the
inverse procedure 5.1 was widely investigated for flow stress models, see, for example,
the author’s papers [117, 125]. The application of the inverse procedure to identify

107



phase transformation models was first presented in [93, 48] and that approach was
used in the present work, supported by sensitivity analysis algorithms to investigate
the model parameters uncertainty, to formulate the most efficient version of the model
and to decrease computational costs.

6.4.1 Objectives of the work

The selection of the relevant phase transformation model for a particular application
was the primary objective of the work. The selection has to be made by searching
for a balance between the model predictive capabilities and computing costs. In the
investigations, a modified JMAK phase transformation model for steels was proposed.
The next objective was to validate the model construction with the sensitivity analysis
presented in Chapter 4, especially global sensitivity methods provided in section 4.2,
to identify the model parameters of the highest impact to the model outputs, and
to apply the identification procedure 5.1 to determine the model parameters for a
particular material.

6.4.2 Phase transformation models

Selection of the model

Classification of phase transformation models with respect to predictive capabilities
and computing costs is presented in Figure 6.27. The first group (bottom left cor-
ner in Figure 6.27) contains models commonly used for fast simulations of industrial
processes and they are generally limited to the description of the kinetics of transfor-
mations and the volume fractions of the phases. The additivity rule [103] is applied
in these models to account for the temperature changes during the transformations.
In the second group (the centre in Figure 6.27) there are differential equations or the
phase field technique models, usually applied to the technology design and the opti-
mization of processes. These models accurately describe transformations in varying
temperatures. The next group (further right in Figure 6.27) includes models based
on the finite element (FE) solution of the diffusion equation with a moving boundary
[88]. Beyond the parameters mentioned earlier, these models are capable of predicting
the distribution of carbon concentration in austenite and the resulting hardness of
bainite and martensite.

A significant extension of the predictive capabilities is obtained when the models
listed above are implemented into the finite difference or finite element models which
simulate industrial thermomechanical processes [92]. This coupling involves an in-
crease in the computing costs. Finally, the most advanced models (the top right
corner in Figure 6.27) connect the FE codes with discrete models, such as Cellular
Automata (CA), Molecular Dynamics (MD) or Monte Carlo (MC).
The performed analysis of the phase transformation models and the published data
[8] lead to the conclusion that the modified JMAK equation models are accurate and
efficient enough to be applied in the modeling when the volume fractions of the phases
are the optimization parameters. Since the objective of the work was fast prediction
of transformation temperatures and volume fractions of the structural components in
industrial processes, the modifications of the JMAK equation were considered.
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Figure 6.27: Classification of the selected phase transformation models: com-
puting costs versus predictive capabilities.

A description of the JMAK model

The general form of the JMAK equation is:

X = 1− exp (−ktn) (6.42)

where X is the transformed volume fraction, t is time, k, n are the parameters.
Theoretical considerations show that, according to the transformation type (the nu-

cleation and growth process, the site saturation process) a constant value of the pa-
rameter n in Equation (6.42) can be used. The values of n are introduced in the model
as a4, a15 and a24 for ferritic, pearlitic and bainitic transformations, respectively.
The parameter k should map the form of the Time-Temperature-Transformation
(TTT) diagram. Following that observation, k is defined as a temperature func-

tion k = f
(

T̂
)

. Various forms of k were tested in the work. A too simple function

may cause low accuracy of the model and a too complex function may cause problems
with the identification of the model and the lack of the uniqueness of the solution.

The function k = f
(

T̂
)

has to be flexible enough to replicate complex phenomena

of the nucleation and growth controlled by diffusion, interface mobility and solute-
drag effect. These phenomena are reversibly dependent on the temperature. The
rate of nucleation increases with the temperature drop below Ae3 . Contrary, dif-
fusion becomes slower at lower temperatures. That inspired the authors of [20] to
propose a modified Gaussian function for the parameter k which is used for ferritic
transformation in this work:

k = kmax exp

[
−
(

T̂ − Tnose

a7

)a8
]

(6.43)

where T̂ is temperature in oC. The four parameters in this function kmax, Tnose, a7,
a8 allow to describe all shapes of the TTT curves in a quite intuitive way: kmax is
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the maximum value of k, Tnose is a temperature position of the nose of the Gaussian
function and represents the temperature (in oC) of the maximum rate of the trans-
formation, a8 is proportional to the nose width at mid height and a7 is related to the
sharpness of the curve.

Equation (6.43) is supposed to account for the influence of the austenite grain size
at the beginning of the transformation. Thus, the following equations are used to
calculate the parameters kmax and Tnose:

kmax =
a5

Dγ
(6.44)

Tnose = Ae3 +
400

Dγ
− a6 (6.45)

where Dγ is the austenite grain size at the beginning of the transformation.
It was concluded from the primary model investigations that there is no need to

introduce such a complex function k
(

T̂
)

for pearlitic and bainitic transformations.

Therefore, a slightly simpler function was selected for the pearlitic transformation:

k =
a14

Da16
γ

exp

(
a13 −

a12T̂

100

)
(6.46)

In the bainitic transformation the dependence on the grain size Dγ is neglected:

k = a23 exp

(
a22 −

a21T̂

100

)
(6.47)

In the model phases incubation times should be accounted for. Equation (6.42)
combined with the function (6.43) does not require the incubation time. It is assumed
that ferritic transformation begins when the volume fraction of ferrite achieves 5%.
Incubation times of the remaining transformations (τp, τb) are calculated as:

• for pearlite

τP =
a9(

Ae1 − T̂
)a11

exp

(
a10 × 103

RT

)
(6.48)

• for bainite

τb =
a17(

a20 − T̂
)a19

exp

(
a18 × 103

RT

)
(6.49)

Additional relationships in the model and equilibrium carbon concentrations are:

cγ =
(c0 −Xf cα)

1−Xf
Xf0 =

cγα − c0

cγα − cα
(6.50)

cγα = cγα0 + cγα1T̂ cγβ = cγβ0 + cγβ1T̂ cα = f
(

T̂
)

(6.51)
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where cγ is the average carbon content in the austenite, cα is carbon content in the
ferrite, c0 is carbon content in the steel, cγα is carbon concentration in the austenite
at the γ−α boundary, cγβ is carbon concentration in the austenite at the γ-cementite
boundary, Xf0 is equilibrium (maximum) ferrite volume fraction in the steel in the
considered temperature. The equilibrium concentrations cγα and cγβ, as well as
carbon content in the ferrite cα, are introduced as the temperature functions. These
functions are polynomials and they are determined using ThermoCalc software based
on the information on the steel chemical composition.

Modeling of phase transformations starts with Equation (6.42) when the tempera-
ture drops below Ae3 . The additivity rule [103] is applied to the model to account for
the temperature variations during transformation. The transformed ferrite volume

fraction Xf

(
T̂ (i)

)
is calculated with respect to the maximum volume fraction of fer-

rite Xf0

(
T̂ (i)

)
for the temperature T̂ (i). Thus, the volume fraction of ferrite with

respect to the whole volume of the material is Ff = Xf0Xf for the fixed temperature

T̂ (i). The value of Xf calculated from Equation (6.42) for the varying temperature
has to be corrected due to a change in the equilibrium (maximum) ferrite volume
fraction Xf0, which is the temperature function (see Table 6.7):

Xf

(
T̂ (i+1)

)
= Xf

(
T̂ (i)

) Xf0

(
T̂ (i)

)

Xf0

(
T̂ (i+1)

) (6.52)

where i is the iteration number, T̂ (i) is temperature in the ith iteration. The sim-
ulation continues until the transformed volume fraction achieves 1. However, when
carbon content in the austenite exceeds the limiting value cγβ (see Equations (6.50)
and (6.51)), the austenite-pearlite transformation begins in the remaining volume of
the austenite.
The bainite initial temperature Tbs and the martensite initial temperature Tms are
functions of the chemical composition of the austenite:

Tbs = a20 − 425[C]− 42.5[Mn]− 31.5[Ni] (6.53)

Tms = a26 − a27cγ (6.54)

Fraction of the austenite which transforms into the martensite, is calculated according
to the model of Koistinen and Marburger [47], described also in [143, 93]:

Xm = 1− exp
[
−0.011

(
Tms − T̂

)]
(6.55)

Equation (6.55) represents the volume fraction of martensite with respect to the vol-
ume of austenite which was remaining at the temperature Tms. The volume fraction
of martensite with respect to the whole volume of the material is:

Fm = (1− Ff − Fp − Fb) Xm (6.56)

where Ff , Fp, Fb are the volume fractions of ferrite, pearlite and bainite with respect
to the whole volume of the sample.
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Since continuous annealing was selected as a case study in this work (see section 6.6),
the transformation of the ferritic-pearlitic microstructure into the austenite also has
to be considered. Kinetics of the austenitic transformation during heating is described
by Equation (6.42) with the coefficient n = a30 and the coefficient k defined as:

k = a28 exp

(−a29 × 10−3

RT

)
(6.57)

Incubation time for the ferrite-austenite transformation is calculated from the equa-
tion:

τa =
a1(

T̂ −Ae1

)a3
exp

(
a2 × 103

RT

)
(6.58)

The phase transformation model described by Equations (6.42)-(6.58) was applied
to predict the phases distribution in the material for the selected industrial process:
continuous annealing after cold rolling presented in section 6.6. To perform the nu-
merical modeling of a process the model was validated with sensitivity analysis first
and next identified using the identification procedure.

6.4.3 Sensitivity analysis

Sensitivity of the modified JMAK phase transformation model with respect to the
model coefficients was estimated using three global sensitivity methods from Chap-
ter 4: the Morris design provided in section 4.2.1, correlation ratios presented in sec-
tion 4.2.2, and Sobol’ indices from section 4.2.2. The model inputs were: x = (cr, a),
where cr is the cooling rate, a = (a4, · · · , a27, Dγ) are coefficients of the JMAK
model. Ten model outputs y = (Tij , Fi) were analyzed, where Tij is temperature, Fi

is the phase volume fraction, i ∈ {f, p, b, m} indicates the ferrite, pearlite, bainite or
martensite phase, j ∈ {s, e} indicates the beginning/end of the phase transformation,
respectively. The modified JMAK model includes information on the steel chemical
composition, as well as information on the phase equilibrium conditions. Hence, the
calculations were performed for the selected dual phase steels. One of them was used
in modeling of the industrial process presented in section 6.6. The chemical compo-
sition of the steels are listed in Table 6.6 while the parameters describing the carbon
concentration equilibrium, determined with the ThermoCalc software, are provided
in Table 6.7.

Table 6.6: Chemical composition of the investigated steels, weight%.

C Mn Si P S Cr Mo Cu Al V Nb Ti N
DP1203:
0.071 1.45 0.25 0.01 0.006 0.55 0.03 0.02 0.022 0.005 0.005 0.002 0.0039
DP1205:
0.11 1.45 0.19 0.014 0.006 0.27 0.03 0.01 0.034 0.005 0.004 0.013 0.0038

The sensitivity results for all the parameters a = (a4, · · · , a27, Dγ) obtained for
the investigated steels by the Morris algorithm are presented in Figure 6.28. It is
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Table 6.7: Parameters in Equations (6.50)-(6.51) describing the carbon concen-
tration equilibrium.

cγα0 cγα1 cγβ0 cγβ1

DP1203: 4.85 -0.005776 -1.47 0.00289
DP1205: 4.57 -0.005412 -0.94 0.00228

cα =

{
−0.069 + 0.000435T̂ − 9.1658× 10−7T̂ 2 + 6.487× 10−10T̂ 3 for T̂ < 637oC

−0.0487268 + 0.00017839T̂ − 1.50788× 10−7T̂ 2 for T̂ ≥ 637oC

observed that some of the model parameters do not impact any model outputs, some
of them influence the model outputs in a negligible way. These parameters cannot
be identified based on the analyzed model outputs or they should be eliminated from
the model.

Figure 6.28: Sensitivity analysis results obtained by Morris design for the mod-
ified JMAK model of the cooling process.

The conclusions are formulated as the summary results from the application of three
sensitivity methods: Morris design, correlation ratios and Sobol’ indices:

• Ferrite. The results for ferrite transformation obtained from all the sensitivity
methods are presented in Figure 6.29. Initial temperature of ferrite transfor-
mation is most sensitive to a7 (a parameter in the k equation (6.43)) - a high
impact of this parameter on Tfs and Ff is observed. The following remarks
are made for the next parameters: a4 (an exponent in Equation (6.42)) - slight
sensitivity to the temperature start Tfs, higher sensitivity to the volume frac-
tion Ff , a5 (a parameter in the kmax equation (6.44)) and a6 (a parameter in
the Tnose equation (6.45)) - both outputs: Tfs and Ff are sensitive to these
parameters, a8 (a parameter k in Equation (6.43)) - a low impact of this pa-
rameter on Tfs and Ff , a20 (a parameter in the Tbs equation (6.53) and the
bainite incubation time τb in Equation (6.49)) - it determines Tbs and it indi-
rectly influences Ff - thus higher sensitivity to Ff , low sensitivity to Tfs. Dγ

(a parameter in the kmax equation (6.44)) - the same sensitivity conclusions as
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for a20. Suggestion: the parameter a8 can be eliminated in modeling the ferrite
phase transformation. The lack of the model sensitivity on the Dγ parameter is
questionable. This problem should be investigated by performing dilatometric
tests for various grain sizes.

• Pearlite. For the considered chemical composition of steels, the contribution of
pearlite transformation is negligible and observed for low cooling rates, below
1oC/s. The conclusions on the model sensitivity are formulated based on the
Morris Design calculations - Figure 6.28. The initial phase transformation tem-
perature Tps is sensitive to the parameter a5 in the kmax equation (6.44) for
ferrite transformation which indirectly influences the beginning of the pearlite
transformation. The end phase transformation temperature Tpe and the phase
volume fraction Fp are sensitive first of all to the parameter a14 in the k equa-
tion (6.46) for pearlite. Some sensitivity is observed for the parameters a4 and
a7 which are related to the ferrite phase. For the dual phase steels that were
chosen for the analysis, those parameters determine whether the pearlite trans-
formation begins, hence their impact on the pearlite model outputs. Regarding
that fact, the model of the perlite transformation for DP steels can be simplified.

• Bainite. The results for bainite transformation obtained from all the sensitivity
methods are presented in Figure 6.30. Three bainite phase model outputs:
the phase transformation temperature start/end Tbs/Tbe and the phase volume
fraction Fb are sensitive to the a20 parameter from the Tms equation (6.53)
and the bainite k equation (6.49) and next to the a26 parameter from Equation
(6.54) defining the phase initial temperature of martensite. Next Tbs is sensitive
to the a19 and a18 - parameters from the bainite incubation time τb (Equation
(6.49)). Lower sensitivity to these parameters is observed for Tbe. The model
output Tbe is sensitive to a24 which is the exponent n in Equation (6.42)). The
remaining parameters defining bainite transformation: a17, a21, a22, a23 do not
impact the bainite model outputs or their impact is very low. Suggestion: the
bainitic transformation model can be simplified.

• Martensite. The results for martensite transformation obtained from all the
sensitivity methods are presented in Figure 6.31. The phase temperature start
Tms is sensitive to the a20 parameter from the Tbs equation (6.53) and next
to the a26 parameter from the Tms equation (6.54). The results for the phase
volume fraction Fm are not consistent but the impact of the parameters a20 and
a26 listed above is observed. Moreover, a slight influence of a4 - a7, a14 and a23

is noticed.

To sum up, the sensitivity analysis indicated the set of parameters of the highest
impact on the model outputs and in the parameters identification process they should
be determined. The parameters of the low impact should be fixed or, if it is possible,
eliminated from the model of the investigated steels.
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(a) Morris design (b) Correlation ratios (c) Sobol’ indices

Figure 6.29: Ferrite phase sensitivity indices calculated with respect to the pa-
rameters of the modified JMAK model estimated by the three SA methods.

(a) Morris design (b) Correlation ratios (c) Sobol’ indices

Figure 6.30: Bainite phase sensitivity indices calculated with respect to the
parameters of the modified JMAK model estimated by the three SA methods.

6.4.4 Identification of the model parameters

According to the functional (5.1) defined in the identification strategy algorithm 5.1,
the functional to solve the identification problem of the JMAK model is expressed as:

Φ(a) =
1

nT

nT∑

i=1

βT
i [T m

i − Ti (a)]
2

+
1

nF

nF∑

i=1

βF
i [F m

i − Fi (a)]
2

(6.59)

where a = (a1, . . . , a30) is the vector of the identified coefficients of the JMAK model,
T m

i , Ti are measured and calculated initial and final temperatures of the phase trans-

formations, βT
i are weighted coefficients defined as 1/ (T m

i )
2
, nT is the number of

temperature measurements, F m
i , Fi are the measured and calculated phases volume

fractions at the room temperature, βF
i are weighted coefficients defined as 1/ (F m

i )
2
,
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(a) Morris design (b) Correlation ratios (c) Sobol’ indices

Figure 6.31: Martensite phase sensitivity indices calculated with respect to the
parameters of the modified JMAK model estimated by the three SA methods.

nF is the number of measurements of the phase volume fractions, i indicates the
phase transformation.

The functional (6.59) was minimized using the modified particle swarm algorithm
provided in Chapter 4, section 4.1.2, to increase the calculation efficiency. The values
of the a parameters obtained from the identification procedure are given in the Table
6.8. The whole JMAK model for all the transformations contains 30 parameters.
However, after the simplification based on the sensitivity analysis only 26 of them
were active in the transformation model for the considered dual phase steels and they
were used in the present work.

The model described by the parameters presented in Table 6.8 was validated. It
was used to simulate all the performed dilatometer tests. Figure 6.32a shows the
comparison of the measured (filled symbols) and predicted (open symbols) initial and
final temperatures of the phase transformations for DP1203 steel. The shape of the
symbol refers to the temperature in the legend. An analysis of the results confirms
that the model predicts initial and final temperatures for the transformations quite
well, although the accuracy is slightly worse for the pearlite initial and bainite final
temperatures. Figure 6.32b shows the calculated volume fractions of the phases for
the same steel. Similarly good results were obtained for DP1205 steel.

6.4.5 Discussion of the results

An analysis and identification of the phase transformation models for steels was per-
formed. The following observations were made:

• The model based on the modified JMAK equation is efficient and satisfactorily
accurate and it can be used for the optimization of the manufacturing of steels
when volume fraction of the phases are the objectives of the optimization.

116



Table 6.8: Coefficients in the phase transformation model calculated using the
identification analysis for the investigated DP steels.

a1 a2 a3 a4 a5 a6 a7 a8 a9

DP1203: 1039 4.861 2.866 1.333 0.673 157.9 39.83 1.983 64.76
DP1205: 1039 4.861 2.866 1.690 0.858 187.9 39.06 1.779 64.84

a10 a11 a12 a15 a17 a18 a19 a20 a21

DP1203: 1.106 0.618 0.153 1.285 1842 66.59 3.489 692.7 0.181
DP1205: 1.106 0.618 0.153 1.285 1600 64.64 3.495 669.2 0.118

a22 a23 a24 a25 a26 a27 a28 a29 a30

DP1203: 0.074 0.406 1.049 0 435.8 1.732 9636 79.4 0.229
DP1205: 0.074 0.344 1.037 0 421.7 1.830 9636 79.4 0.229

(a) (b)

Figure 6.32: Comparison of the predictions of the optimized phase transforma-
tion model (the coefficients in Table 6.8 for DP1203 steel) with measurements for
(a) the transformations initial and final temperatures and for (b) volume fractions

of the phases.

• Sensitivity analysis allowed to simplify the modified JMAK equation model
by removing the relation of the temperature dependent coefficients describing
kinetics of the pearlite transformation.

• The identification procedure is efficient to determine a large number of the phase
transformation model parameters and the application of sensitivity analysis
reduced the dimension of the parameter domain.

6.5 Design of the hot rolling technology of dual phase steel

strips

Optimization of product properties in the metal forming industry is a complex task.
This is particularly challenging for innovative materials, e.g. dual phase steels, which
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require precise thermomechanical treatment. Numerical modeling of the production
of dual phase steels includes thermomechanical model for the rolling and phase trans-
formation model for microstructure properties. Both of the models are characterized
by the material parameters and the model predictions are related to the accuracy
of the determination of these parameters. The phase transformation model was the
subject of the investigations presented in section 6.4. This section deals with the
problem of the parameter identification of another part of the production cycle - the
hot rolling process.

6.5.1 Objectives of the work

Difficulties in the optimization of material properties after hot rolling are usually
related to a large number of control variables which should be considered in the tech-
nology design. Thus, the objective of the work was to apply the sensitivity analysis
to evaluate the importance of all variables as far as their influence on the finishing
rolling temperature and the grain size. An arbitrary hot rolling process characterized
only by a number of passes and cooling conditions between the passes was selected
for the analysis. Such process parameters as the initial temperature, interpass times,
heat exchange coefficients and rolling velocities were selected as independent vari-
ables. The next objective was to define the task of the production cycle design based
on the information from performed the sensitivity analysis the of rolling process and
sensitivity analysis of the phase transformation model presented in section 6.4, and
to make the identification procedure 5.1 robust for the formulated problem.

6.5.2 The experiment

The pilot hot rolling mill installed in the Institute for Ferrous Metallurgy in Gliwice,
Poland, was used in the analysis. This mill enables an arbitrary configuration of the
process composed of passes, controlled cooling/heating between the passes followed
by the controlled cooling after rolling. Hot rolling in the reverse pilot mill of the 4 mm
strip from 100 × 240 mm slab in 6 passes was investigated. The technical parameters
of the rolling mill have an influence on the results but they are not controllable pa-
rameters and they were not the variables in the sensitivity analysis. These parameters
are: the work roll diameter 250 mm, the length of the roll 700 mm, the maximum
cross section of the stock slab 500 × 100 mm, the maximum rolling velocity 1.1 m/s,
the pressure in the descaler 25 MPa, the maximum rolling force 2.5 MN. The detailed
information on the semi-industrial line is presented in [25].

The investigated material was DP1205 steel of chemical composition presented in
Table 6.6 in section 6.4. The plastometric and stress relaxation tests were performed
to supply data for the identification and validation of the flow stress and the mi-
crostructure evolution models. All the tests were performed at the Institute for Fer-
rous Metallurgy in Gliwice. Axisymmetrical compression tests for the temperatures
800-1200oC and the strain rates 0.1-100s-1 were performed for the identification of
the flow stress model. Stress relaxation tests were performed for the identification of
the microstructure evolution model. The microstructure of the sample after cooling
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characteristic for the DP steels (fast cooling to 680oC, maintaining at this temper-
ature for 10 s and again fast cooling to the room temperature) is shown in Figure
6.33b. The microstructure is composed of 72% of ferrite, 8% of bainite and 20% of
martensite. Mechanical properties of the DP steel sample were above the standard:
Re = 462 MPa, Rm = 723 MPa, A2 = 35.7%, Z = 61%.

Multi-stage plane strain compression (PSC) tests, which simulated the rolling pro-
cess, were performed for the validation of the flow stress and the microstructure
evolution models. The strains (the strain rates, s-1) in those tests were as follows:
0.4(5) → 0.3(5) → 0.2(10)→ 0.2(10) → 0.2(30)→ 0.2(50)→ 0.2(50). The interpass
times were, respectively: 30 s, 10 s, 10 s, 3 s, 3 s and 1 s. The recorded stresses and
temperatures during the test are shown in Figure 6.33a. An analysis of the results
shows that partial recrystallization of the austenite is observed in the last 4 passes in
the range of temperatures 900-850oC. Flow stress value increases and in the last pass
is about 3 times higher than in the first one.

(a) (b)

Figure 6.33: (a) Stress-strain relationship and changes of temperature in the
multi-stage PSC test, (b) microstructure after the physical simulation of rolling

and cooling characteristic for the DP steels.

6.5.3 The numerical model of the process

The numerical model of the hot rolling process described in the previous section is
considered. The problem of each pass is formulated as an one-dimensional mechanical
problem with time, combined with the heat equation solved using the finite element
method [61], described by the equations provided in Chapter 3, section 3.1. The
microstructure evolution model introduced to the finite element code is based on the
fundamental works of Sellars [104].

The flow stress model parameters were estimated with the identification procedure
5.1 presented in section 6.1, based on the data from the experiments from the previous

119



section.
The flow stress model for the considered dual phase steel was:

σp = 3255.3ε0.19 exp (−0.283ε) ε̇0.119 exp
(
−0.003007T̂

)
(6.60)

where T̂ is temperature in oC, ε is strain, ε̇ is the strain rate.
The microstructure evolution model, as it was mentioned above, was based on Sellars

research work [104]. Due to lower temperatures and higher strain rates in the finishing
rolling dynamic recrystallization was neglected. The following equations were used:

• the kinetics of static recrystallization

Xst = 1− exp

[
ln (0.5)

(
t

t0.5

)1.7
]

(6.61)

• time for 50% recrystallization

t0.5 = 8.5× 1013ε−1.834ε̇−0.536D1.8
0 exp

(
218630

RT

)
(6.62)

• the grain size after static recrystallization

DSRX = 96.43ε−0.408D0.2
0 ε̇0.14 exp

(
−25371

RT

)
(6.63)

• the grain growth

D2 = D2
SRX + 10At A = 9.5 +

10920

T̂
(6.64)

where Xst is the recrystallized volume fraction, D0 is the grain size prior to deforma-
tion.

The flow stress and the microstructure models were implemented to the finite ele-
ment solver of the rolling process.

6.5.4 Sensitivity analysis

Manufacturing of dual phase steel strips consists of hot rolling, laminar cooling, cold
rolling and annealing processes. The design of the whole production cycle requires
deep knowledge of each step of the process. Laminar cooling and annealing processes
were investigated in the author’s papers [113, 82]. In this work, the hot rolling process
is considered. The formulation of the design task of hot rolling process with the nu-
merical approach was the objective of the investigations and while the identification
algorithm 5.1 was applied, the problem was formulated as the optimization task. The
optimization for the production cycles has already been theoretically formulated for
forging, see, for example, [57, 132] and for the identification problem in rolling [130].
Due to a large number of the optimization variables, a practical solution for rolling
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is difficult. The hot rolling design problem is nonlinear and, when the finite element
method is used to model this problem, computation costs are relatively high (the
computation time of a few-stage rolling process is about two minutes). Moreover,
there is no precise information on the design parameter domain - it is defined on the
basis of experts’ and technologists’ knowledge. Thus, according to the identification
algorithm 5.1, statement no. 1, the preliminary step to validate the hot rolling model
should be preformed. This is crucial for the proper and effective process design. The
validation was carried out with global sensitivity analysis methods provided in Chap-
ter 4, section 4.2 because the whole parameter domain was going to be investigated
and verified. Sensitivity analysis of the finishing rolling temperature and the final
austenite grain size with respect to controllable process parameters was performed.
It was expected that the number of process parameters would decrease and the ranges
of their variability would be contracted.

Formulation of the hot rolling problem design

The model input parameters characterize the process, boundary conditions and the
material. The model outputs are the final temperature of rolling and the average
grain size after the last pass. The design of a hot rolling process is an identification
problem that was transformed to the optimization task according to the algorithm
5.1. The functional of this identification problem includes the information on the final
rolling temperature and the material microstructure, especially the desired value of
the grain size:

Φ (x) = ‖y (x)− ym‖2 (6.65)

where x = (aij_k) is the vector of the selected process parameters: i ∈ {0, . . . , 6} is
the pass number; j ∈ {0, A, B, P}: 0 is the furnace, A, B is the transportation time,

P is the pass; k ∈
{

T̂ , t, v, h
}

: T̂ is temperature, t is the interpass time in s, v is

the roll rotational speed in rpm., h is the heat transfer coefficient at the strip-roll
interface in W/(m2K); y = (T6P , Dγ6P ) are the model outputs: temperature and the
grain size, respectively, m indicates the measured data.

The functional (6.65) is minimized with respect to x (the parameters of the rolling
process). To control the efficiency and robustness of the optimization procedure, the
sensitivity analysis was carried out.

The sensitivity computations

The sensitivity indices: µ̃i-σ̃i, η̃2 and Si were estimated for the rolling mill pro-
cess. The indices were calculated with respect to the selected model parameters
x = (aij_k). The model outputs were the components of the functional (6.65): T6P ,
Dγ6P . The parameter domain was defined according to the technological constraints
(see Table 6.9). The results are presented in Figures 6.34 and 6.35.
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Table 6.9: Constraints of the process parameters x = (aij_k).

a00_T a00_t a1A_t a1B_t aiP _h aiP _v aiP _t,i6=6 a6P _t

1100-1200 5-25 0.5-2 1-5 5× 103-5× 104 10-50 4-20 3-6

Figure 6.34: Sensitivity indices for the temperature T6P after the last pass of
the hot rolling process.

6.5.5 Discussion of the results

The performed analysis provided the information on the sensitivity of the model
outputs with respect to the selected model inputs. The most important parameters
are: the interpass times aiP _t, the exit temperature from the furnace a00_T , (see
Figures 6.34 and 6.35). These parameters should be optimized in the hot strip rolling
process design. The effect of the interpass time increases with the subsequent passes
and the largest effect is for the interval after the 5th pass. Much lower sensitivity
is observed for the roll rotational speed aiP _v. The sensitivity to the heat transfer
coefficients aiP _h is reasonable, thus errors in the evaluation of these parameters will
probably not influence the optimization.

The sensitivity analysis for hot strip rolling indicated the process variables of the
highest importance to the temperature and the grain size after the last pass of rolling.
These process variables compose interpass times and the exit temperature from the
furnace and they will become the components of the optimization vector of the whole
manufacturing process design.

The applied sensitivity analysis methods provided the information which was helpful
in the identification of the model parameters of the highest impact to the model
outputs. While the selected parameters are going to be decision variables in the
process design formulated as the optimization task, the computation costs will be
reduced, which was the main objective of those investigations.
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Figure 6.35: Sensitivity indices for the grain size Dγ6P after the last pass of the
hot rolling process.

6.6 Design of the continuous annealing process

Continuous annealing after cold rolling was selected as a testing process for the iden-
tified phase transformation model described in section 6.4. The investigations were
performed for DP1205 steel of chemical composition presented in Table 6.6 in section
6.4. Sensitivity analysis of the annealing process with respect to the controllable pa-
rameters of the cycle was carried out first, the results were presented in [113]. Physical
simulations of that process were performed to validate the model, as well [94]. The
main conclusions from [113] are:

• with respect to the phase volume fractions the most important parameter is the
intercritical temperature Th1 which decides of ferrite volume not transformed
into austenite during heating stage,

• next the annealing phase transformation model is sensitive to the parameters
of the first, rapid step of the cooling stage: the cooling rate Cr1 and the final
temperature Tr1; this step is crucial for producing ferrite microstructure from
austenite and influences the beginning of the bainite and martensite transfor-
mations,

• the remaining parameters of the annealing process are not so much important.

Simulations of the continuous annealing after cold rolling were performed to test
the predictive capabilities of the model. Four thermal profiles characteristic for the
continuous annealing were considered. A schematic illustration of the typical con-
tinuous annealing thermal cycle is shown in Figure 6.36a and the investigated cycles
are shown in Figure 6.36b. Heating/cooling rates, as well as the final temperature
for each part of the cycle were the controllable parameters of the cycle. The values
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of these parameters are given in Table 6.10. In the last part of each cycle Cr5 was
20oC/s and the final temperature was equal to the room temperature.

(a) (b)

Figure 6.36: (a) A typical continuous annealing thermal profile, (b) thermal
profiles for annealing processes investigated in the work.

The results of simulations of the annealing thermal cycles S1-S4 in Table 6.10 are
presented in Figures 6.37 and 6.38.

Table 6.10: Heating/cooling rates, oC/s, and final temperatures, oC, for each
part of the thermal cycles for the investigated annealing processes.

cycle Hr1 Th1 Hr2 Th2 Cr1 Tc1 Cr2 Tc2 Cr3 Tc3 Cr4 Tc4

S1 3 780 0.25 790 8 710 6.67 700 8.75 350 0.6 320
S2 3 880 0.25 890 18 710 6.67 700 8.75 350 0.6 320
S3 3 780 0.25 790 8 710 6.67 700 23.3 350 0.6 320
S4 3 805 0.25 815 9.94 710 6.67 700 20 350 0.6 320
S5 3 790 0.25 800 10 700 7.4 689 5.65 350 0.6 320

Changes of volume fractions of the phases are presented in Figures 6.37a and 6.38a.
The thermal cycles S1 and S2 differed with the maximum temperature of the cycle.
This temperature was 890oC for the case S2 and full austenitization after heating was
obtained. The maximum temperature in the case S1 was 765oC, which was in the
lower part of the inter critical region. In consequence, over 70% of ferrite remained
in the microstructure after heating. The cases S3 and S4 represent annealing in the
inter critical region of the temperature but with the maximum temperature of 790oC,
which is higher than in the case S2. The differences between S3 and S4 were in the
temperatures of heating and in the cooling rates during fast cooling (see Table 6.10).
Changes in the average carbon concentration in austenite are presented in Figures
6.37b and 6.38b. It is seen in this figure that the largest carbon concentration
was obtained for the case S1, in which the final volume fraction of ferrite was the
largest. Volume fractions of the phases after various annealing cycles are shown in
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Figure 6.39a. It is observed that the required volume fraction of ferrite at the level
of 0.7 was obtained for the case S3, but the disadvantageous excess of bainite over
martensite was observed. The volume fraction of ferrite was slightly too low in the
case S4, but only a negligible amount of bainite was obtained in that case.

(a) (b)

Figure 6.37: (a) The temperature and kinetics of the transformations during the
annealing cycles S1 (solid lines) and S2 (dotted lines), (b) changes in the average
carbon concentration in austenite during the annealing cycles S1 (solid line) and

S2 (dotted line).

(a) (b)

Figure 6.38: (a) The temperature and kinetics of the transformations during the
annealing cycles S3 (solid lines) and S4 (dotted lines), (b) changes in the average
carbon concentration in austenite during the annealing cycles S3 (solid line) and

S4 (dotted line).
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(a) (b)

Figure 6.39: (a) Volume fractions of the phases after various annealing cycles,
(b) microstructure after the thermal cycle A5, composed of 32% of hard con-
stituents, approximately 25% of martensite and 7% of bainite (courtesy of Profes-

sor Roman Kuziak from the Institute for Ferrous Metallurgy in Gliwice).

(a) (b)

Figure 6.40: (a) The temperature and kinetics of the transformations during the
annealing cycle S5, (b) changes in the average carbon concentration in austenite

during the annealing cycle S5.

On the basis of these simulations and the sensitivity analysis performed in [113], it
was possible to formulate an optimization task to obtain the required volume fraction
of martensite of around 0.25 with a negligible amount of bainite. The parameters
of this case are given as S5 in Table 5 and in Figure 6.36b. It is observed in case
S5 that a slight decrease of the temperature Tc2 allowed to predict the desired ma-
terial microstructure presented in Figure 6.39b. Volume fractions of the phases after
this annealing cycle are shown in Figure 6.40a and changes in the average carbon
concentration in austenite are presented in Figure 6.40b.
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The presented example for the physical model of continuous annealing confirmed
good predictive capabilities of the model. It was also proved that the application
of inverse analysis combined with sensitivity analysis allowed for efficient optimiza-
tion of the annealing process. Physical simulation for the optimal parameters of the
annealing cycle confirmed good accuracy of the method.



7 Conclusions

7.1 Summary

The main output of the work is the development and implementation of the iden-
tification strategy algorithm for the problems of the model parameter estimation in
metal forming. The procedure is described in Chapter 5. The sensitivity analysis
application, presented in Chapter 4, as a module combined with the primarily devel-
oped software for the inverse calculations for a rigid-plastic thermomechanical model,
forms a robust tool for the parameter identification. The sensitivity analysis package
provides:

• local methods with numerical and semi-analytical estimation of sensitivities,

• global methods, including algorithms for points generation (design for the ex-
periment),

and it is applied for both the numerical model of the problem and the identification
problem.

In the work, various problems were solved with the developed identification proce-
dure 5.1 and the calculations are presented in Chapter 6. Each case study includes
the description of the applied sensitivity analysis method with regard to the identifi-
cation algorithm and the advantages of the sensitivity analysis results are listed. The
calculated sensitivity indices:

• allow to validate the model,

• provide information whether it is possible to determine model parameters based
on the assumed functional of the identification problem,

• enclose or extend the parameter domain,

• estimate an error and/or an accuracy of determined parameters,

• allow to adjust parameters of the optimization procedure.

The above items lead to a decrease in the calculations costs and the parameter
estimation uncertainty.

The following problems were studied in Chapter 6:

• the identification of rheological and friction parameters using the results from
the uniaxial compression test, the ring compression test, the 2D and 3D plane
strain compression test for various flow stress models
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• sensitivity analysis of the quantitative fracture criterion based on the results of
the SICO test,

• sensitivity analysis of the cellular automata finite element model for the strain
localization,

• identification of the phase transformation model parameters for steels,

• a design of the hot rolling technology of dual phase steel strips.

Within the work, the mathematical background of the identification problem in
metal forming, formulated as an inverse problem, was investigated. Ill-posedness
of the models based on thermomechanical differential equations is presented in
Chapter 3, particular in terms of stability. In addition, due to the phenomenological
character of many models, the assumption of a unique model solution is discussed.
Therefore, alternative methods, such as sensitivity analysis algorithms, are required
to support the estimation of the identified parameters.

The performed investigations and the developed algorithm of the identification pa-
rameters strategy showed that it is possible to obtain the optimal or close to the op-
timal solution for the ill-posed inverse problems of identification with the application
of sensitivity analysis methods combined with the optimization procedures. Sensitiv-
ity analysis decreases the computational costs of the identification and increases the
reliability of the solution.

The significance of the obtained results. It was shown in the literature review
(Chapter 1) that up to date, neither theoretical investigation of the identification
problems for metal forming numerical models nor the application of the global sensi-
tivity algorithms have been discussed. The identification problems were the subject
of a great number of scientific papers on metal forming but the uniqueness of the so-
lution, uncertainty of the estimated quantities have not been studied in detail. This
work is also an attempt to link the theoretical background of the inverse problems
with practical applications in the metal forming numerical modeling and identifica-
tion problems. The following conclusions can be drawn on the basis of performed
analysis using the developed identification strategy:

• The identification problems in metal forming are ill-posed problems as presented
in Chapter 3. Solving such kind of problems requires regularization which trans-
forms the tasks to the well-posed problems. Construction of an inverse operator
for the identification tasks of metal forming is hard, thus, the optimization prob-
lem is formulated. Searching for the solution of the optimization task with the
classical algorithms is not satisfactory and using the bio-inspired techniques is
computationally too expensive in many cases. Application of the developed
sensitivity analysis methods as a preliminary step of the identification increases
the robustness of the inverse analysis and reduces the computational costs. Ap-
plication of the local sensitivity algorithms to the results of inverse analysis
allows to estimate the accuracy of the obtained solution. It was shown in the
case studies provided in Chapter 6.
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• The identification procedure presented in Chapter 5 combining the optimization
task and the local sensitivity procedure, is a powerful tool for the interpretation
of the plastometric test results and yields the material properties independent
of the type of the machine, the size of the sample, a lubricant, a method of
heating and other test parameters. The approach guaranties that the obtained
values of the material and process parameters are very close to the real ones.

• In identification of the friction coefficient, the flow of the material represented
by the shape of the sample (usually ring) after compression is almost not sen-
sitive to the rheological parameters. It means that the identification of friction
coefficient can be performed separately, independently of the tested material.

• The flow stress determined from the identification procedure for the PSC test
is only slightly sensitive to the assumption of the friction. More sensitivity but
also not essential was observed for the UC. The flow stress determined from
the identification procedure for the RC and RSC tests is more sensitive to the
assumed friction. It means that the exact evaluation of the friction parameter
is not crucial for the accuracy of the identification procedure. However, to
assure the accurate solution of the identification problem both friction and
rheological parameters should be the design variables and the functional of the
optimization task should be composed of both loads and shape of the sample
after compression.

• All the actions undertaken to improve robustness and accuracy of the inverse
analysis for the tests performed to determine the material properties, were suc-
cessfully applied to the designed identification problems. Application of the
identification strategy algorithm allowed to estimate the optimal parameters of
such processes as hot rolling, laminar cooling and continuous annealing.

7.2 Future prospects

Within the work, identification problem in metal forming is studied and the identifi-
cation strategy procedure is developed to obtain the optimal (good enough) solution
for that task. It is obvious, that not all the issues have been resolved and there are
still some challenges. Some open problems, which are being solved and which are go-
ing to be solved with regard to the metal forming identification problems, are listed
below:

• the construction of a regularizator for inverse thermomechanical rigid-plastic
problem in terms of the theorem 3.4.1,

• sensitivity analysis for multiscale models and stochastic models,

• sensitivity analysis for the multi-cycle of production,

• sensitivity analysis combined with the hp-adaptation finite element code,

• parallel computation for sensitivity to increase the effectiveness of computation,
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• the application of sensitivity analysis for various evolutionary optimization
methods, algorithms based on artificial immune systems or other bio-inspired
optimization procedures.

It can be assumed that, as for identification problems considered in the work, the
developed identification strategy procedure would apply to the problems mentioned
above, it would reduce the costs of computations and uncertainty of the identified
parameters.





A Appendix

Functional analysis - fundamentals

For this appendix, it is assumed that K is a linear operator: K : X → Y and X , Y
are normed spaces over the field K = R or C.

Definition A.0.1 (Boundedness of the operator). The linear operator K is bounded
if there exists c > 0 such that ‖Kx‖ ≤ c ‖x‖ for all x ∈ X.

Theorem A.0.1. The following assertions are equivalent:

1. The operator K is bounded.

2. The operator K is continuous for every x ∈ X.

The proof of this theorem can be found in [43].

Definition A.0.2 (Compact operator). The operator K : X → Y is compact if it
maps every bounded set A into a relatively compact set K (S).

Definition A.0.3. A set B ⊂ Y is relatively compact if every bounded sequence
(yi) ⊂ B has an accumulation point in B̄ (i.e. the closure B̄ is compact).

Below there are definitions which explain the used terms. It is convenient to intro-
duce the term ball for the formal definitions of these terms:

Definition A.0.4 (Ball). The ball B of the radius r and the center x ∈ X is the set
such that

B (x, r) := {y ∈ X : ‖y − x‖ < r}

Definition A.0.5 (Bounded, open, closed and other sets). A subset A ⊂ X is

1. bounded if there exists r > 0 and A ⊂ B (x, r).

2. open if for every x ∈ A there exists ǫ > 0 such that B (x, ǫ) ∈ A.

3. closed if the complement X\A is open.

Let (xi)i ⊂ A be a sequence.

1. A sequence (xi)i is bounded if there exists c > 0 such that ‖xi‖ < c for all i.

2. A sequence (xi)i is convergent if there exists x ∈ X such that ‖x− xi‖ conver-
gence to zero in R.

3. x ∈ X is an accumulating point if there exists a subsequence (ain
)n that con-

vergence to x.
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A set A ∈ X is compact if every sequence in A has an accumulating point in A.

A set Ā :=
{

x ∈ X : ∃ (xi)i ⊂ A ∧ x = lim
i→∞

xi

}
is called closure of A.

In finite-dimensional spaces, every compact set is bounded and closed. In finite-
dimensional spaces, the inverse properties are also true (Bolzano-Weierstrass theo-
rem): in finite-dimensional normed spaces, every closed and bounded set is compact.
The theorem is not true for infinite-dimensional spaces.

Definition A.0.6 (Orthogonal complement). X is a Hilbert space.

• Elements x, y ∈ X are called orthogonal if (x, y) = 0.

• Let A ⊂ X. The set A⊥ := {x ∈ X : (x, y) = 0 ∀y ∈ A} is called the orthog-
onal complement of A.

Definition A.0.7 (Orthonormal Systems). A countable set of elements A =
{xi : i = 1, 2, 3, . . .} is called the orthonormal system if (xi, xj) = 0 ∀i 6= j and
‖xi‖ = 1 ∀i ∈ (N)

Theorem A.0.2 (Adjoint operator). K : X → Y is a linear, bounded operator, X
and Y are Hilbert spaces. There exists one and only one linear, bounded operator
K∗ : Y → X such that (Kx, y) = (x, K∗y) for all x ∈ X, y ∈ Y . The operator K∗

is called the adjoint operator to K. If X = Y and K∗ = K the operator K is called
self-adjoint.

Definition A.0.8 (Spectrum. Eigenvalues. Eigenvectors). Let K : X → Y is a
linear operator between the normed spaces X and Y . The spectrum σ (K) is the set
of the (complex) number λ such that the operator K − λI, where I is the identity on
X, does not have a bounded inverse on X. λ ∈ σ (K) is called an eigenvalue of K if
K − λI is not one-to-one. If λ is an eigenvalue. Then the nontrivial elements x of
the kernel N (K − λI) = {x ∈ X : Kx− λx = 0} are called eigenvectors of K.

Theorem A.0.3 (Spectral radius). K : X → Y is a linear operator.

• xj ∈ X, j = 1, . . . , n is a finite eigenvectors set corresponding to the pairwise
different eigenvalues λj ∈ C. Then {x1, . . . , xn} are linear independent. If
X is a Hilbert space and operator K is self-adjoint (i.e. K = K∗), then the
eigenvalues λj are of real-values and the corresponding vectors x1, . . . , xn are
pairwise orthogonal.

• If K : X → X is a self-adjoint and X is Hilbert space, then ‖K‖ =
sup

‖x‖=1

(Kx, x) = r (K), where r (K) = sup {|λ| : λ ∈ σ (K)} is called the spectral

radius of K.

Definition A.0.9 (Singular values). Let K : X → Y be a compact operator between
the Hilbert spaces X and Y with adjoint operator K∗ : Y → X. The square roots
µj =

√
λj, j ∈ J , of the eigenvalues λj of the self-adjoint operator K∗K : X → X

are called singular values of K. Notice that J ⊂ N or J = N.
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Comment: every eigenvalue λ of K∗K is nonnegative: K∗K = λx ⇒ λ (x, x) =
(K∗Kx, x) = (Kx, Kx) ≥ 0. It means that λ ≥ 0.

Theorem A.0.4 (Singular Value Decomposition). Let K : X → Y be a linear com-
pact operator, K∗ : X → Y - adjoint operator to K and µ1 ≥ µ2 ≥ . . . > 0 the
sequence of the positive singular values of K, ordered and counted to its multiplicity.
Then there exist the orthonormal systems (xj) ⊂ X and (yj) ⊂ Y of the properties
Kxj = µjyj and K∗yj = µjxj for all j ⊂ J . The system (µj , xj , yj) is called a
singular system for K.
Every x ∈ X has the emphsingular value decomposition of the form x = x0 +∑
j∈J

(x, xj) xj for some x0 ∈ N (K) and Kx =
∑
j∈J

µj (x, xj) yj.

Theorem A.0.5 (Picard). Let K : X → Y be a linear compact operator with singular

system (µj , xj , yj). The equation Kx = y is solvable if and only if y ∈ N (K∗)
⊥

and∑
j∈J

1
µ2

j

|(y, yj)|2 <∞. Then x =
∑
j∈J

1
µj

(y, yj) xj is a solution of equation Kx = y.
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