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Zbigniew Kąkol (Chairman)
Marek Cała
Borys Mikułowski
Tadeusz Sawik
Mariusz Ziółko

Reviewers:
Grzegorz Dobrowolski, AGH University of Science and Technology, Poland,
Juan Carlos Burguillo Rial, University of Vigo, Spain.

Author of the monograph is an employee of
AGH University of Science and Technology
Faculty of Computer Science, Electronics and Telecommunications
Department of Computer Science
al. A. Mickiewicza 30
30-059 Krakow, Poland

Desktop publishing: Aleksander Byrski

c© Wydawnictwa AGH, Kraków 2013
ISSN 0867-6631
ISBN 978-83-7464-587-4

Wydawnictwa AGH
al. A. Mickiewicza 30, 30-059 Kraków
tel. 12 617 32 28, tel./fax 12 636 40 38
e-mail: redakcja@wydawnictwoagh.pl
www.wydawnictwa.agh.edu.pl



Contents

Abstract ............................................................................................................ 7
Streszczenie...................................................................................................... 8

Preface................................................................................................................... 11
1. Contemporary search metaheuristics .......................................................... 17

1.1. Search problems and heuristic techniques .............................................. 17
1.1.1. Difficult search problems ........................................................... 18
1.1.2. Metaheuristic and heuristic search methods .............................. 19
1.1.3. Selected single-solution metaheuristics ..................................... 20

1.2. Evolutionary metaheuristic techniques ................................................... 23
1.2.1. Avoiding the local extrema ........................................................ 24
1.2.2. Diversity in evolutionary algorithms.......................................... 25
1.2.3. Stopping criteria for the evolutionary algorithms ...................... 27

1.3. Hybrid search methods ........................................................................... 28
1.3.1. Classification of hybrid methods................................................ 28
1.3.2. Cultural and memetic computing............................................... 30
1.3.3. Immunological metaheuristic techniques................................... 34

1.4. Agent-based computing .......................................................................... 36
1.5. Vacant niches in theory and practice....................................................... 41

2. Evolutionary multi-agent systems ................................................................ 44
2.1. Agent-based architectures of computing systems................................... 45
2.2. Evolutionary multi-agent system ............................................................ 46

2.2.1. EMAS concept ........................................................................... 47
2.2.2. Formal definition of EMAS ....................................................... 50
2.2.3. EMAS actions ............................................................................ 57
2.2.4. EMAS management ................................................................... 66

5



2.3. Immunological evolutionary multi-agent system ................................... 70
2.3.1. iEMAS concept .......................................................................... 70
2.3.2. Formal definition of iEMAS ...................................................... 72
2.3.3. iEMAS management .................................................................. 77

2.4. Towards verification of EMAS ............................................................... 81
3. Formal aspects of agent-based metaheuristics ............................................ 82

3.1. Formal analysis of EMAS....................................................................... 82
3.1.1. EMAS dynamics ........................................................................ 83
3.1.2. Ergodicity of EMAS .................................................................. 85

3.2. Formal analysis of iEMAS ..................................................................... 89
3.2.1. iEMAS dynamics ....................................................................... 89
3.2.2. Ergodicity of iEMAS ................................................................. 92

3.3. Goals attained in formal analysis............................................................ 96
4. Experimental verification of EMAS ............................................................. 97

4.1. EMAS in solving benchmark problems.................................................. 97
4.1.1. Definition of benchmark problems ............................................ 98
4.1.2. Classical EMAS and PEA.......................................................... 100
4.1.3. Memetic EMAS and PEA.......................................................... 103
4.1.4. Classical and immunological EMAS ......................................... 112

4.2. EMAS parameters tuning........................................................................ 113
4.2.1. Energy-related parameters ......................................................... 113
4.2.2. Probabilistic decision parameters............................................... 117
4.2.3. Immunological parameters......................................................... 120
4.2.4. Parameters tuning recapitulation................................................ 124

4.3. EMAS in real-world problems................................................................ 125
4.3.1. Step and flash imprint lithography inverse problem .................. 126
4.3.2. Advisory strategy parameters optimisation................................ 134

4.4. Goals attained in experimental verification ............................................ 141
Summary............................................................................................................... 142
A. Experimental configuration details .............................................................. 145
B. Technical details of EMAS ergodicity proof ................................................ 149
Bibliography ......................................................................................................... 161

6



ALEKSANDER BYRSKI
Agent-based Metaheuristics in Search and Optimisation

Abstract

In the domain of computing, an everlasting requirement for developing new meta-
heuristics for particular problems, coming right from the well-known no free lunch
theorem, may be observed. The need for new search and optimisation methods, hy-
brid ones in particular, paves the way for the development of different metaheuristics,
going beyond classical methods (such as population-based ones). Evolutionary multi-
agent systems (EMAS), which brings together interesting features of agency (such as
autonomy) and inspirations coming from population-based techniques, is a good ex-
ample of such promising methods. However, constructing complex metaheuristics
without a detailed description of their structure and behaviour may become point-
less, and novel methods, though yielding promising results in particular cases, may
be underestimated, because they have not been fully understood and analysed. This
dissertation focuses on the issues concerning the justification of using agent-based
metaheuristics (in particular EMAS and its variants), preparing of dedicated formal
model, conducting an analysis aimed at proving so-called asymptotic guarantee of
success and performing experimental analysis of the considered methods. These is-
sues may be treated as the most important and novel aspects of this dissertation. In
the beginning of the monograph, a systematic state-of-the-art review is given, then
the concepts of EMAS and its modifications are discussed, later the formal model
of structure and dynamics of the system using Markov-chains is described. Finally,
the outcomes of a broad series of experiments on selected benchmark and real-world
problems are discussed. The results presented in this dissertation are useful for prac-
titioners who would to use agent-based metaheuristics and to obtain a deeper insight
into the details of their design, experimental and formal features.
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ALEKSANDER BYRSKI
Agentowe metaheurystyki w poszukiwaniach i optymalizacji

Streszczenie

Rozwiązywanie trudnych problemów poszukiwawczych i optymalizacyjnych zawsze
będzie wymagać tworzenia złożonych, często przybliżonych metod. Sankcjonuje to
sformułowanie twierdzenia znanego jako no free lunch theorem, wskazującego na
konieczność wynajdywania coraz to nowych, w szczególności hybrydowych metod,
wychodzących poza ramy określone przez tradycyjne już uniwersalne algorytmy
optymalizacji (takie jak np. metody populacyjne). Typowym przykładem tej klasy
metod są ewolucyjne systemy wieloagentowe (ang. evolutionary multi-agent sys-
tems, EMAS), łączące cechy agentowości (takie jak autonomia) oraz inspiracje
pochodzące z technik populacyjnych. Niniejsza monografia koncentruje się na opra-
cowaniu agentowych metaheurystyk (w szczególności EMAS i jego wariantów),
konstrukcji modelu formalnego, przeprowadzeniu analizy ukierunkowanej na dow-
iedzenie tzw. asymptotycznej gwarancji sukcesu oraz wykonaniu eksperymentalnej
weryfikacji badanych metod. Wspomniane tematy są najbardziej nowatorskimi as-
pektami prezentowanej monografii, szczególnie przeprowadzenie pełnego dowodu
ergodyczności EMAS znacznie wykracza poza do tej pory spotykane efekty analizy
metaheurystyk (koncentrujące się na bardzo szczególnych przypadkach, czy to al-
gorytmów, czy też rozwiązywanych problemów). Na początku pracy przedstawiono
przegląd stanu wiedzy, następnie zaprezentowano koncepcję EMAS i jego wari-
antów, wreszcie przedstawiono model formalny stanowiący bazę do analizy dynamiki
EMAS na podstawie badaĹ„ odpowiednio skonstruowanego łańcucha Markowa,
a także jego cech takich jak ergodyczność. Monografia kończy się prezentacją
wyników badań eksperymentalnych dotyczących rozwiązywania zarówno prob-
lemów benchmarkowych, jak i rzeczywistych. Prezentowane rezultaty mogą być
przydatne do pogłębienia wiedzy w zakresie agentowych systemów obliczeniow-
ych i ich własności formalnych, wreszcie stanowić mogą podbudowę dla adaptacji
prezentowanych metaheurystyk agentowych do partykularnych zadań stawianych
przez zainteresowanych badaczy.
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Preface

Many interesting search and optimisation problems are too difficult to solve us-
ing analytical methods. Michalewicz and Fogel have provided a number of features
identifying such difficult problems, e.g. when the admissible search space is so big
that performing an exhaustive search is impossible; the problem is so complex that
it requires a simplified model for even trying to produce any solution, or the goal
function describing the quality of the solutions is noisy or varies in time.

Problems, in which candidate solutions may only be sampled randomly, but there
is practically no means of deriving them on the basis of the existing knowledge of the
search space, are called “black-box problems”. They constitute an additional chal-
lenge to the search and optimisation systems.

Such problems may only be solved using general-purpose methods (i.e., heur-
istics), taking into consideration little if any information from a problem domain.
Heuristics provide “good-enough” solutions without concern as to whether they may
be proved to be correct or optimal. It may be said that these methods trade-off pre-
cision, quality, accuracy and execution time in favour of computational effort. Such
methods which are usually referred to as the methods of last resort are necessary for
dealing with difficult problems

A general definition of a heuristic method, without giving details of a particular
problem, accurate definition of search space or operators is called a metaheuristic,
and is usually defined as a general purpose, nature-inspired search method.

A particular metaheuristic method (however excellent it may be for solving a cer-
tain problem, or a certain class of problems) may never become the ultimate answer
to solving all possible optimisation problem (cf. no free lunch theorem). Therefore,
looking for novel metaheuristics will always be necessary. These methods may be
developed when seeking for inspiration in different domains of life such as biology,
sociology or culture, but they also may be put together (hybridised) using the methods
already developed.

For the last forty years, a growing interest has been observed in the systems
where a task to solve is decomposed into smaller parts (subtasks), which are dealt
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with separately and later the are synthesized into an overall solution. Such an ap-
proach may be described as distributed problem solving, and is usually easily im-
plemented in parallel environments such as multi-core machines, clusters or grids. It
should be noted that multi-agent systems belonging to a popular class of methods in
artificial intelligence are an effective implementation of distributed problem solving.
Agents are perceived as autonomous beings, which are able to interact with their en-
vironment and other agents and bear the features of intelligence. In these systems, a
task to solve is usually decomposed into subtasks, which are entrusted to agents. Each
agent’s goal is to solve its part, and different features of agency affect this process,
e.g. autonomy allows for self-adaptation of the agent’s strategy.

In 1996, Krzysztof Cetnarowicz proposed an evolutionary multi-agent system
(EMAS) dedicated to solving computing problems, with interesting features like dis-
tributed selection and lack of global control. Since then the idea of EMAS has been
applied to different problems (e.g. single, multimodal and multicriteria optimisation).
This approach still retains high potential possibilities of extension and hybridisation
(e.g. with cultural or memetic mechanisms).

It is noteworthy that since the inception, EMAS-related research has yielded
different modification of this system (utilising elitist, coevolutionary or immunolo-
gical inspirations). Based on these modifications, effective solutions to many difficult
problems have been provided such as evolution of neural-network architecture, mul-
timodal optimisation and financial optimisation to name but a few. EMAS has thus
proved to be a versatile optimisation mechanism in practical situations.

Multi-agent systems provide a good basis for the development of hybrid search
and optimisation systems, however it should be noted that in this way, more and more
complex computing systems are created. Also, using common sense and remember-
ing Ockham’s razor rule, one should apply complex search techniques solely to diffi-
cult problems. Therefore metaheuristics, in particular agent-oriented ones, should be
treated as the methods of last resort, and should not be applied to simple problems.

On the other hand, the need to build complex (hybrid) systems, calls for per-
forming a more in-depth analysis of features of their work. A detailed description of
its structure and behaviour is required for a full understanding of them, moreover,
providing means for stochastic analysis may yield additional, important results such
as confirmation whether the system works at all (meaning, whether or even when it
is able to localise the result).

Several formal models aimed at proving different features of evolutionary meta-
heuristics have been constructed. One of the first and important models of metaheur-
istic methods was Michael Vose’s model, which proves that for a fixed size popula-
tion, simple genetic algorithm (SGA) can be modelled by a Markov chain, and after
further assumption that the mutation rate is positive, this chain is ergodic. This result
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formally justifies SGA as a well-defined global optimisation algorithm. Other ap-
proaches to model evolutionary algorithms to be mentioned are different models for
single-population evolutionary algorithms, proposed by Davis, Mahfoud or Rudolph.
In particular, Rudolph’s model was used to prove the first hitting time for a 1+1 evol-
ution strategy optimising a convex function. Unfortunately, there is lack of general
models, as all those mentioned above are oriented on analysis of particular methods.

To sum up, the following needs in the domain of computing metaheuristics may
be identified:

1. Apparent difficulty with many search and optimisation problems calls for de-
veloping novel metaheuristics, and agent-based hybrids seem to provide the
appropriate answer, due to their intrinsic features such as autonomy and flexibil-
ity.

2. Developing a complex metaheuristic requires a careful construction of a de-
tailed formal model, both in order to ease understanding of the structure and
behaviour of the system, and to justify its existence by providing formally cor-
rect observations about the particular abilities of the method.

3. Apart from the formal verification of metaheuristics, an accurately planned
testing of the method, based on popular difficult benchmark and real-world prob-
lems is necessary. Moreover, research on the influence of changing certain para-
meters on the efficiency of the method is necessary due to the fact that meta-
heuristics usually offer a vast number of parameters to tune up. Such observa-
tions may be further used to verify the formal model and finally, to enhance the
method proposed in the first place.
In an effort to deliver appropriate tools for satisfying the complex needs, con-

ducting dedicated research focused on

working out novel, effective metaheuristics, utilising agent-
based approach and hybridising different metaheuristics, along with
providing appropriate means for their formal and experimental
verification

seems to be necessary.
In order to fulfil these goals, the following research tasks are reported in this

monograph:
• State-of-the-art review of current popular metaheuristics, grounding a base for

further considerations on the construction of hybrid methods.

• Description of classical and modified EMAS-related metaheuristics.

• Formal description of EMAS and related systems structure and behaviour.
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• Construction of Markov-chain based model for EMAS and related systems used
as a base for stochastic analysis of EMAS features.

• Outcomes of stochastic analysis of the systems discussed in the dissertation.

• Conducting a series of experiments aimed at testing efficiency of the proposed
agent-based metaheuristics for difficult benchmark and real-world problems.

• Testing the influence of selected parameters of the proposed agent-based meta-
heuristics on their overall efficiency.

The structure of this monograph is as follows. Chapter 1 presents a systematic
state-of-the-art review. It begins with identification of difficult problems (so-called
“black-box”) search problems and justification for the use of complex metaheuristics
to solve them. Later, selected single-solution metaheuristics are discussed as methods
providing base for constructing hybrid (e.g. memetic) systems described later in this
work. Then, evolutionary metaheuristics are briefly described putting emphasis on the
features that are common to all population-based metaheuristics, such as measuring
and enhancing the diversity, or the stopping criteria. In the next section, problems of
hybridisation of metaheuristics are outlined, and additional hybrid metaheuristics are
discussed (memetic, cultural and immunological). Again, this selection is imposed by
the systems discussed later in this monograph, which are extensively inspired by these
techniques. Later, the possibilities of enhancing computing systems with agency are
presented, and finally, existing deficits in the theory and practice of metaheuristics
are identified.

Chapter 2 begins with a description of agent-based architectures of computing
systems. Then, a concept of Evolutionary Multi-agent Systems (EMAS) is discussed,
followed by a formal definition of the system state and transition functions of particu-
lar agents. Later, detailed definitions of agents’ actions are given. The presentation of
the agent-based system management follows. A similar section structure is repeated
for the description of immunological EMAS (iEMAS), i.e. description of the concept,
the system state and the management structure. Finally, the need for providing accur-
ate formal analysis of the presented systems is justified.

Chapter 3 starts with the construction of a Markov-chain modelling dynamics
of EMAS. Then, after necessary assumptions, the ergodic theorem is defined and
a full formal proof is given. Selected technical details of the proof (i.e., estimates of
lower bounds of probabilities and upper bounds of steps required to perform the proof
stages) were transferred to Appendix B, in order to retain clarity of the text. Later,
the same structure of presentation is retained for iEMAS, however, in this case no
full formal proof has been constructed, and only necessary conjecture is formulated
and the proof outline is described. The chapter is concluded with a short description
of actual goals reached in the formal analysis of agent-based metaheuristics.
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Chapter 4 presents the results of a wide-ranging series of experiments conduc-
ted in order to evaluate the efficiency of agent-based metaheuristics, as compared
to classical search methods. In the first section, EMAS is evaluated using selected
high-dimensional benchmark functions. After presenting the benchmarks, compar-
ison between EMAS and PEA (parallel evolutionary algorithm) is made, using clas-
sical (evolutionary) and memetic versions of these methods. Later, immunological
version of EMAS is tested versus the classical EMAS. In the next section, tuning
of selected EMAS parameters is considered. After observing an impact of changing
certain EMAS parameters (energy-related and probabilistic), and iEMAS (lympho-
cyte parameters), the results are summed up, which provides a base for further use
in order to adapt these metaheuristics to particular problems. In the last section, effi-
ciency of EMAS is tested in two selected real-world problems (step and flash imprint
lithography inverse problem and optimisation of Sudoku solving strategy).

The last part of the monograph is a summary, followed by Appendix A (con-
taining a description of the configuration for which the experimental results were
obtained) and Appendix B (giving technical details of the EMAS ergodicity proof).
The final part of the monograph is bibliography.
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1. Contemporary search metaheuristics

Tackling difficult search problems calls for applying unconventional methods.
This necessity is imposed by having little or no knowledge of the intrinsic features
of the problem, topology of search space etc. In such cases, approximate techniques,
like metaheuristics become the methods of last resort.

Having a plethora of metaheuristics to choose from, those population-based (as
opposed to single solution oriented) seem to be the best choice, both at algorithmic
and implementation level, and as they process more than one solution at a time, they
can evade local extrema easier than single-solution approaches. Moreover, it is easy
to implement them efficiently using ubiquitous parallel systems, such as multi-core
processors, graphical processing units, clusters and grids.

In this state-of-the-art review chapter, difficult (so-called “black-box”) search
problems are identified, and metaheuristic methods are presented as one of the reas-
onable ways to deal with them. Next, evolutionary metaheuristics are briefly de-
scribed, providing the basis for further considerations. After discussing possible ways
of using hybrid metaheuristics, the issue of agency in computing systems is discussed.
Finally, existing deficits in the theory and practice of metaheuristics are identified,
which prepares for the description of original results concerning Evolutionary Multi-
agent Systems that are presented in the next chapters.

1.1. Search problems and heuristic techniques

Popular real-world search problems usually consist in finding a set of parameters
of a certain model, according to specific criteria. These criteria are usually expressed
as certain functions of the mentioned parameters. The goal of search is to optimise
the criteria function, therefore these problems belong to the class of optimisation,
consisting in finding all global minimisers arg min{Φ(x)}, x ∈ D of the objective
function: Φ : D → [0,M ], where D ⊂ RN , N ∈ N stands for the admissible,
sufficiently regular set of solutions, R+ 3M < +∞.
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Heuristic (gr. heuresis: to find) search methods provide “good-enough” solutions
without concern as to whether they may be proved to be correct or optimal [132]. It
may be said, that these methods trade-off precision, quality, accuracy and execution
time in favour of computational effort. Such methods are necessary for dealing with
difficult problems, usually being referred to as the methods of last resort (see, e.g.
[133]).

One of the simplest heuristics is a greedy search algorithm, randomly generating
solutions and accepting only these which fulfil the predefined criteria. More sophist-
icated examples of heuristics are the Monte Carlo [102] search methods. Heuristics
may also be hybridised (see Section 1.3.1), in order to improve effectiveness of other
search methods (as A* algorithm or alpha-beta pruning in tree-search [157]).

Using common sense and remembering Ockham’s razor rule, one should apply
complex search techniques solely to difficult problems. Therefore, this study does not
include a number of popular tasks, such as optimisation of convex functions or linear
programming, with their reliable techniques [92].

1.1.1. Difficult search problems

Michalewicz and Fogel in [132] propose several reasons why the problem may
be considered difficult, e.g. the number of possible solutions is too large to perform
an exhaustive search for the best answer; the problem is so complex that in order to
provide any feasible answer, a simplified model must be used; the evaluation function
describing the quality of the solution is noisy or varies with time and therefore many
solutions are sought.

Certain search problems, which fall into the description given above, are per-
ceived to be difficult per se, because their domains are very hard or even impossible
to be described and explored, using conventional analytical methods (see, e.g. com-
binatorial optimisation problems [140]). The setting of such problems is sometimes
called “black-box scenario” [56].

According to a definition given in the previous section, let us assume that there
exists a meta-algorithm covering all randomised search heuristics working on the
finite search space D. Functions to be optimised are all functions that may be de-
scribed as f : D → [0,M ]. Now the “black-box” scenario is defined as follows [56,
Algorithm 1].

1. Choose some probability distribution p on D and produce a random search point
x1 ∈ D, according to p. Compute f(x1).

2. In step t, stop if the stopping criterion is fulfilled. Otherwise, depending on the
up-to-date candidate solutions I(t) = (x1, f(x1), . . . , xt−1, f(xt−1)), choose
some probability distribution pI(t) onD and produce a random search point xt ∈
D according to pI(t). Compute f(xt).
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If a certain problem can be solved with this scenario only (in a reasonable time),
it can be called a “black-box problem”. In other words, this notion encompasses all
the problems, whose candidate solutions may be sampled randomly, but there is no
means of deriving them on the basis of the existing knowledge of the search spaceD.
To sum up, such problems may only be solved using general-purpose algorithms (i.e.
heuristics), taking into consideration little, or no information from a problem domain

Randomised algorithms (those using random, or pseudo-random choices) are
usually classified as Monte Carlo (because they provide an approximate solution) or
Las Vegas (because they finally provide a correct solution, if enough time is given)
algorithms [6].

Unfortunately, there is no guarantee that heuristics will find satisfactory solu-
tions, therefore, their features observed for particular problems must be verified em-
pirically. This is simply because theoretical analyses take a number of assumptions
of the algorithm (that is inevitable when constructing a simplified model of reality).
On the other hand, this simplification may hamper the applicability of the model in
real-world scenarios, therefore an experimental verification is required to make sure
that both heuristic and its model are valid.

Yet a heuristic may often give an approximate solution with controllable ad-
equacy, which means that a process solving can be stopped by a decision maker once
he is satisfied.

Although these algorithms process certain points from the problem domain, hav-
ing at the same time complete information about the value of the criteria function of
this particular solution, the global features of the search, such as e.g. the information
about closeness to the optimum, remain hidden. The whole search process consists
in more or less complex iterative sampling of the problem domain.

Complex approaches that may be used to solve such difficult problems (see, e.g.
[2]) somehow relieve the user of a deep understanding of intrinsic relations among
the different features of the problem itself, instead constituting “clever” and “general”
computing systems. No one can claim that the Holy Grail of search techniques has
been found, thinking about these universal techniques, as well-known “no free lunch
theorem” must be kept in mind. Wolpert and Macready prove that all search and
optimisation techniques are statistically identical when compared for all problems
described in certain domain [193, 192]. So there is still much to be done to adapt
parameters of these techniques to solve certain problems.

1.1.2. Metaheuristic and heuristic search methods

A general definition of a heuristic algorithm, without giving details such as par-
ticular problem, accurate definition of search space or operators is called a metaheur-
istic. In this way, a simple heuristic algorithm, such as greedy search may be defined

19



as, e.g. “iterative, local improving of a solution based on random sampling”, without
going into details of the nature of random sampling or the explored space. There-
fore, metaheuristics are usually defined as general purpose, nature-inspired search
algorithms [74].

Blum and Roli [13] provide a summary of the metaheuristic properties:
• they are approximate and usually non-deterministic,

• their goal is to efficiently explore the search space seeking for (sub-)optimal
solutions,

• they “guide” the search process,

• they may incorporate mechanisms dedicated to avoiding being trapped in local
extrema,

• they are not problem-specific,

• they can utilise search experience (usually implemented as some kind of memory
mechanism) to guide the search.
Another type of heuristic algorithms are so-called hyper-heuristics, which utilise

more advanced mechanisms (e.g. from the domain of machine learning) to optimise
the parameters of the search, or even select an appropriate lower-level search method
[16].

A simple, but effective classification of metaheuristics (cf. [52, 15]), which gives
a sufficient insight into the problem for the purpose of this monograph, is as follows:
• Single-solution metaheuristics work on a single solution to a problem, seeking to

improve it in some way. The examples are local search methods (such as local-
search, greedy heuristic, tabu search or simulated annealing) [178].

• Population-based metaheuristics explicitly work with a population of solutions
and put them together in order to generate new solutions. The examples are evol-
utionary algorithms [78], immunological algorithms [39], particle swarm optim-
isation [104], ant colony optimisation [51], memetic algorithms [137] and other
similar techniques.
These techniques are usually nature-inspired and follow different phenomena

observed in e.g. biology, sociology, culture or physics.

1.1.3. Selected single-solution metaheuristics

This monograph is focused on population-based metaheuristics, however, in this
section selected and popular single-solution metaheuristics will be presented in short,
forming a base for further considerations, in particular with regard to the creation of
hybrid systems.
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Stochastic hill climbing One of the simplest and most popular single-solution me-
taheuristics is the stochastic hill-climbing algorithm (see Pseudocode 1.1.1). Starting
with a random solution, the algorithm selects subsequent ones (also randomly) and
accepts them only if they improve the value of a certain predefined goal function. The
algorithm was primarily designed to solve combinatorial optimisation problems (for
classical implementations refer to, e.g. [70, 135, 100]), however, it can be easily used
in continuous optimisation by appropriately defining the search step. This algorithm
may be easily incorporated into hybrid systems (e.g. fulfilling the role of local-search
algorithm in memetic computing) [189].

Pseudocode 1.1.1: PSEUDOCODE OF HILL CLIMBING ALGORITHM

current ← RandomSolution()
for i ∈ [1,max]

do


candidate ← randomNeighbour(current)
if goalFunction(candidate) ≥ goalFunction(current)

then current← candidate

Simulated annealing A more sophisticated approach to random local search is
simulated annealing. Inspiration for this algorithm comes from an annealing process
in metallurgy. In this process, a material is heated and slowly cooled under specific
conditions in order to increase the size of the crystals in the material and to reduce
possible defects that may arise in the cast. Using this metaphor, each solution in the
search space is treated as a different value of internal system energy.

The system may be heated (in this case the acceptance criteria of the new samples
are relaxed) or cooled (in this case the acceptance criteria are narrowed). Once the
system is cooled down, the final suboptimal solution is obtained. To sum up, in
this algorithm, the search space is probabilistically resampled based on Metropolis-
Hastings algorithm [82] for simulating samples from a thermodynamic system [107]
(see Pseudocode 1.1.2). This algorithm was also designed for combinatorial optim-
isation, but may be easily adapted to continuous problems [121].

Tabu search Tabu search is a global optimisation metaheuristic, however, it may
be easily used for controlling an embedded heuristic technique (creating a hybrid
search method). It is a predecessor of a large family of derivative approaches which
introduce memory structures into metaheuristics.

The main goal of the algorithm is to help the search process avoid returning to re-
cently visited areas of the search space (cycling). The method is based on maintaining
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a short-time memory of the recent solutions visited in the course of search, refusing
to accept the new solutions which are the same (or close) as the ones contained in the
memory (see Pseudocode 1.1.3).

The algorithm was introduced by Glover and applied to optimisation of em-
ployees duty roster [76] and Travelling Salesman Problem [75]. Nowadays it is one
of the most popular algorithms hybridised with other search techniques (see, e.g.
[101, 127]).

Pseudocode 1.1.2: PSEUDOCODE OF SIMULATED ANNEALING ALGORITHM

current ← randomSolution()
best ← current
for i ∈ [1,max]

do



Si ← randomNeighbour(current)
temp← rcalculateTemperature(i , tempMax )
if goalFunction(Si) ≤ goalFunction(current)

then


current← Si
if goalFunction(Si) ≤ goalFunction(best)

then best← Si

else if (exp( goalFunction(current)−goalFunction(Si )
temp ) > random())

then current← Si

Pseudocode 1.1.3: PSEUDOCODE OF TABU SEARCH ALGORITHM

best ← RandomSolution()
tabuList ← ∅
while not stoppingCondition()

do



candidateList← ∅
for (candidate ∈ neighborhood(best))
if ( not contains(tabuList , best))

then candidateList← candidateList ∪ {candidate}
candidate← locateBestCandidate(candidateList)
if (goalFunction(candidate) ≤ goalFunction(best))

then tabuList← tabuList ∪ {candidate}
best← candidate
trimTabuList()
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1.2. Evolutionary metaheuristic techniques

The origins of the evolutionary algorithms may be found in the 19th-century
works of Gregor Mendel—the first to state the baselines of heredity from parents
to offspring—who demonstrated that the inheritance of certain traits in pea plants
follows particular patterns (now referred to as the laws of Mendelian inheritance).
Later in 1859, Charles Darwin formulated the theory of evolution [38]. These theor-
ies inspired several independent groups of researchers to create different schools of
evolutionary algorithms during the second half of the 20th century:
• John Holland [89, 90] in 1975 modelled the process of evolution of the individu-

als constructed with the use of binary code. He was the first researcher to utilise
predefined operators used to change genotypes, which were similar to crossover
and mutation. He found out that the average fitness of this population tends to
increase. A similar algorithm under the name of genetic algorithm was later
popularised by David Goldberg [78].

• Ingo Rechenberg [149] and Hans-Paul Schwefel [165] researched optimisation
of mechanical devices by permuting randomly-generated solutions. Having ob-
served certain similarities to the biological evolution process in their approach,
they invented methods known under the name of evolution strategies [167].

• Lawrence Fogel [66] tried to model the process of inception of artificial intel-
ligence upon an approach based on self-organisation. He evolved finite auto-
mata aimed at understanding a predefined language [65]. This approach was
called evolutionary programming, and after further adaptation became a pop-
ular technique in optimisation [66].

• John Koza tried to work on automatic generation of computer programs using
evolutionary algorithms. His research focused on evolving LISP program struc-
tures using a tree-based encoding, which is natural for this language. In this way,
a technique called genetic programming was devised [112].
A detailed survey of evolutionary techniques may be found in [8].
Generally speaking, evolutionary metaheuristics process a population of indi-

viduals representing exemplary solutions to a certain problem. A general goal of this
process is to find an optimal solution (or solutions) to the problem by maximising
a predefined goal function (called usually “fitness function”) that is used to evaluate
the individuals belonging to the processed population.

It is noteworthy that the individuals contain a genotype which is an encoded
solution to a given problem. The genotype consists of genes, describing different
features of the solution. Different representations are applied to different problems,
e.g. optimisation problems require binary or real-value based representation, while
combinatorial problems usually require permutation representations.
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The stopping criterion is an important feature of the evolutionary approach is (cf.
Section 1.2.3).

In evolutionary algorithms, the population is processed in steps called “gen-
erations”. One generation consists of several phases which introduce changes into
population. These phases, which are executed in the presented order, are as follows
[4, 78, 131]:

1. Initialisation: random generation of individuals fulfilling predefined constraints.

2. Evaluation: computing the value of the fitness function for all the individuals.

3. Selection: determination of so-called mating pool, comprising the individuals
that will become parents of the next population.

4. Crossover: producing offspring of parents belonging to a mating pool.

5. Mutation: introducing additional random changes into the newly generated indi-
viduals.
The detailed algorithm is presented in Pseudocode 1.2.1.

Pseudocode 1.2.1: GENERAL PSEUDOCODE OF EVOLUTIONARY ALGORITHMS

population ← initialisePopulation()
while not stoppingCondition()

evaluations ← evaluate(population)
matingPool ← selection(population, evaluations)
population ← crossover(matingPool)
population ← mutation(population)

1.2.1. Avoiding the local extrema

Solving difficult search and optimisation problems (e.g. black-box ones) intro-
duces additional requirements for the evolutionary algorithms concerning the ability
to avoid or escape from the local minima. This feature is crucial to achieve a balance
between the most important features of search techniques, namely exploration and
exploitation [78, 131].

Exploration, as defined by March “. . . includes things captured by terms such
as search, variation, risk taking, experimentation, play, flexibility, discovery, innova-
tion” [126] while exploitation “. . . includes such things as refinement, choice, produc-
tion, efficiency, selection, implementation, execution” [126]. In terms of metaheurist-
ics, exploration is the ability to conduct broad search in every part of the admissible
search space, in order to provide a reliable estimate of the global optimum, whrereas
exploitation consists in refining the search to produce a better solution [176].
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A number of modifications of classical evolutionary algorithms were proposed in
order to improve their capability of avoiding the local extrema of the fitness function:
• Modifying the lifetime of individuals, as a precaution against the domination of

the good individuals (possibly residing in a local extremum) with high reproduc-
tion probability. The lifetime of the individual may depend straightforwardly on
its fitness value [166].

• Introducing additional random features, e.g. randomly generated immigrants to
the population (independent of those created during reproduction), periodic re-
newal of the population (restarting the search based on the individuals generated
in the previous run), random distortions of the fitness function [4].

• Weakening competitiveness during selection, implemented as, e.g. fitness shar-
ing (based on lowering the value of fitness function for the individuals residing
in the same local extremum, leading to decrease their reproduction probability)
[78].

• Constraining the selection range by dividing the base population into subpopu-
lations. The most important methods are parallel evolutionary algorithms built
according to the island and diffusion models [30].

• Preselection (implemented as a modification of the succession scheme) based on
removing a certain individual from the population during reproduction, e.g. re-
moving one of the parents (e.g. worse one in terms of the fitness function value).
A more complex technique is crowding based on removing from the population
an individual that is the most “similar” to the newly-created one [33].
Avoiding the local extrema, and at the same time achieving a balance between

exploration and exploitation is closely connected with the notion of population di-
versity.

1.2.2. Diversity in evolutionary algorithms

In evolutionary search methods, when taking into consideration that many solu-
tions are processed at the same time with variation operators (e.g. crossover and muta-
tion in evolutionary algorithms), maintaining population diversity is crucial. Lack of
diversity leads to stagnation and the system may focus on locally optimal solutions
(in other words—trapped in a local optimum), lacking the diversity to escape [129].
Therefore, providing appropriate means of measuring and retaining population di-
versity is a very important task, which in this monograph is measured according to
the following two methods:
• Morrison–De Jong (MOI) measure based on the concept of moment of inertia for

centroid (centre of gravity computed for points distributed in multi-dimensional
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space) [136]. This measure is closely dependent on the distribution of the indi-
viduals across the search space.

• Minimal standard deviation (MSD) of each gene computed for all individuals in
the population, similar to the column-based method proposed by De Jong [44].
This simple measure focuses on dispersion of the average values computed for
individual genes.

It is easy to see that MOI measure tends to be more general than MSD, therefore,
observing both measures may yield interesting results that show different aspects of
population diversity.

In population-based methods, retaining diversity is an outcome of a balance
between exploration and exploitation abilities (cf. classical evolutionary algorithms
discussed in a textbook by Michalewicz [131]). An extensive survey of exploration
and exploitation balance retaining methods for evolutionary algorithms is given in
[36], however, this point of view may be easily extended to all population-based me-
taheuristics.

Referring to selected classical diversity enhancement techniques, several decom-
position and coevolutionary techniques come in mind. Niching (or speciation) tech-
niques [125] are aimed at introducing useful population diversity by forming sub-
populations (also called “species”). Allopatric (or geographic) speciation may be
considered when individuals of the same species become isolated due to geograph-
ical or social changes. Decomposition approaches of so-called parallel evolutionary
algorithms (PEA) model such phenomena by introducing non-global selection (mat-
ing) and some spatial structure of population [30].

In a coarse-grained PEA (also known as regional or multiple deme model), the
population is divided into several subpopulations (regions, demes) and selection is
limited to individuals inhabiting one region, and a migration operator is used to move
(copy) selected individuals from one region to another. In a fine-grained PEA (also
called a cellular model) individuals are located in some spatial structure (e.g. lattice)
and selection is performed in the local neighbourhood.

In coevolutionary algorithms, the fitness of each individual is not computed dir-
ectly based on the definition of the problem to be solved, but results from interactions
with other individuals residing in the population. In cooperative coevolutionary al-
gorithms, a problem to be solved is decomposed into several subproblems solved by
different algorithms in separate subpopulations [147]. Cooperation between individu-
als from different subpopulations may take place only during a phase of computing
fitness for the complete solution. The fitness value is computed only for the group of
the individuals from different subpopulations, which form a complete solution to the
problem.
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In competitive coevolutionary algorithms usually two individuals compete with
each other in a tournament and their “competitive fitness” corresponds to the outcome
of this competition [141]. In each algorithm step, a given individual from one subpop-
ulation competes with its opponents taken from other sub-populations. The results of
this competition have an impact on the current fitness of the individual which mates
with partners coming from the same subpopulation. This mechanism can be applied
irrespectively of the number of subpopulations used in the algorithm—it can be used
even if there is only a single population. In this case, opponents are chosen from the
same population.

1.2.3. Stopping criteria for the evolutionary algorithms

The two main features of evolutionary algorithms are their random nature and
the fact that they produce suboptimal results. Both these features lead to an important
conclusion: the user is unsure whether the solution found recently is close to the
optimal. He also does not know, when (and if) the optimal solution will be generated.
Therefore, an appropriate definition of stopping criteria is crucial for these search
techniques.

One of the immanent features of evolutionary algorithms is asymptotic conver-
gence (the probability of reaching the optimal solution converges to 1 as time tends to
infinity). There is a lack of mathematical proofs of this feature for popular metaheur-
istics, however, Michael Vose presented a detailed proof of asymptotic convergence
for a simple genetic algorithm modelled with the use of Markov chains [188].

Practical stopping criteria seldom utilise detailed the analysis of the search pro-
cess, instead they consider the basic features of the observed generations [131, 4, 78]:

1. Monitoring the solutions generated by the algorithm based on the phenomenon
that at the beginning of the search better individuals (comparied to the current
population) are created more frequently than later, e.g.:

• Criterion of the maximal cost based on the assumption that if a certain cost
reaches a predefined value, the algorithm is stopped (e.g. after checking that
the maximal number of generations has been reached).

• Criterion of satisfactory fitness function level: the algorithm is stopped,
when the best individual crosses a certain, predefined value of the fitness
function. The application of this criterion is somewhat risky, because the
user must set arbitrary level of the fitness function when its properties are
unknown. Moreover, none of the individuals may cross the predefined fit-
ness value, so in the worst case the algorithm can run infinitely.

• Criterion of a the minimal improvement speed, based on the observation of
the results produced by the algorithm which is stopped when there is no
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further improvement in the solution in the predefined period of time. This
criterion is also risky as the algorithm may get stuck in a local extremum
of the fitness function for a longer time; so again, the accurate choice of the
mentioned period of time should require the knowledge of the properties of
the fitness function in order not to stop the search prematurely.

2. Monitoring exploration features of the algorithm. These criteria are based on
experimental observation of the loss of diversity (caused, e.g. by using of the
crossover operator), e.g.:

• Criterion of loss of population diversity based on computing a certain di-
versity measure and stopping the search when its value falls below a certain
level. This approach is based on the assumption that the algorithm, having
passed the exploration phase, starts exploitation when new individuals are
generated near a certain extremum of the fitness function (not necessarily
the global one).

• Criterion of the deterioration of the self-adaptive mutation operator based
on the experimentally proved hypothesis that the mutation range adaptation
tends to decrease in the evolutionary algorithms (this is again caused by
passing into the exploitation phase).

The easiest of these criteria are of course the cost ones (based on generation
count, or on the overall time passed from the beginning of computation).

1.3. Hybrid search methods

This monograph focuses on population-based metaheuristics and, moreover, on
their specific hybridisations with agent-based computing paradigm, as it will be dealt
with in Chapter 2. Therefore, localisation of the methods of interest in the domain of
hybrid techniques is also desired. Here, a classification of hybrid methods proposed
by Talbi [177] is given, followed by presentation of several popular hybrid tech-
niques. These techniques became an inspiration for different aspects of the systems
presented in this monograph.

1.3.1. Classification of hybrid methods

Talbi in [177] provides a concise way of classification of hybrid approaches
based on selected design issues:
• In low-level hybrid techniques, a certain function of one algorithm is replaced

with another optimisation algorithm.
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• At the same time, in high-level hybrid techniques, different optimisation al-
gorithms are combined without changing their intrinsic behaviour.

• In relay hybrid techniques, the individual algorithms are applied in a line, one by
one.

• In teamwork hybrid techniques, each algorithm performs an independent search.
Based on the above-mentioned issues, Talbi [178, 177] identifies four main

groups of hybrid metaheuristics:
• LRH (low-level relay hybrid): an optimisation method is embedded in a single-

solution algorithm (e.g. hybridisation of local-search method inside a simulated
annealing).

• LTH (low-level teamwork hybrid): an optimisation method is embedded in a
population-based algorithm (e.g. memetic systems hybridizing local-search with
evolutionary computation).

• HRH (high-level relay hybrid): several optimisation algorithms are executed in
a sequence (e.g. local-search yields an initial population for evolutionary al-
gorithm, then the results of evolution are processed by tabu search).

• HTH (high-level teamwork hybrid): several optimisation algorithms executed
parallelly cooperate to find a solution (e.g. parallel evolutionary algorithm).
The computing systems discussed in this monograph cross two classes: LTH and

HTH (see Chapter 2).
Again, following Talbi [177], other important attributes of hybrid algorithms

may be identified:
• Homogeneous and heterogeneous hybrids combining the same or different al-

gorithms (e.g. parallel evolutionary algorithm consisting of identically con-
figured islands vs. differently parametrised or completely different algorithms
running on the islands).

• Global and partial hybrids combining the algorithms searching the whole space
or its part (e.g. evolutionary algorithm vs. coevolutionary algorithm).

• General and specialist hybrids solving the same or different target optimisation
problems (e.g. memetic algorithm vs. meta-evolution [80]).
Following this classification, the systems discussed in this monograph may be

perceived as homogeneous, global and general hybrids.
Both single-solution and population-based approaches may be used to find the

final solution, however, the latter seem to suit the difficult problems better (i.e. black-
box optimisation). Population-based approaches produce subsequent approximations
of the solution in parallel, utilising more information about the solutions already
found (by the means of variation operators such as crossover and mutation) than
single-solution oriented approaches (such as simulated annealing).
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To sum up, a combination of two or more metaheuristics can be perceived as
a hybrid metaheuristic. This class of algorithms is very simple from a practitioner’s
point of view (their implementation based on connecting different “components” is
easy).

1.3.2. Cultural and memetic computing

The cultural algorithms extend the evolutionary computing field by adding new
capabilities of influencing the search process: the cultural space and multi-level in-
teractions (not only cooperative and competitive relations imposed by the selection
procedure and new population generation, but also the belief or knowledge space,
along with the possibilities of its genetic modification is considered). Cultural and
memetic algorithms are inspired by Richard Dawkins’ theory of cultural evolution
[41], which assumes that culture may also be decomposed into self-replicating parts
(so-called memes) that will compete to prevail in the environment.

Cultural algorithms Culture includes habits, knowledge, beliefs, customs, and
morals of members of society. Culture and environment where the society lives are
interrelated, and the former interacts with the latter, via positive or negative feed-
back cycles. Culture also influences the individual evolution, by constructing differ-
ent rules affecting, e.g. the possibilities of reproducing of certain individuals (com-
pare, e.g. castes in India).

Thus, the cultural algorithm may be defined as a multi-level system that takes
advantage of both evolutionary and cultural relations between the individuals in order
to influence the ontogeny and manage the search process. For example, during the
development of evolutionary search individuals accumulate information about the
environment and its different features. This information constitutes the belief space
also known as knowledge base and it (or its parts) can be communicated to other
individuals. Then, feedback is given, e.g. by communicating interesting areas of the
search space (positive feedback) or issuing a warning about the pitfalls (negative
feedbacks).

Individuals become units who are capable of learning, being at the same time
subjects of some embedded search technique (typically an evolutionary algorithm)
and utilising a higher-order mechanism to process the cultural information (e.g. some
inference engine) to affect the evolution search process. The knowledge base may
contain:
• Normative knowledge: e.g. a collection of value ranges for individuals, accept-

able behaviour etc.
• Domain specific knowledge: intrinsic information about the domain of the prob-

lem.
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• Situational knowledge: information about the ongoing search events (e.g. the
best solution so far).

• Temporal knowledge: history of the search space, e.g. a tabu list.

• Spatial knowledge: information about the topography of the search space.

The general algorithm of a cultural metaheuristic is presented in Pseudocode 1.3.1.
One of an interesting uses of this approach is Learnable Evolution Model proposed
by Ryszard Michalski [134], utilising an inference engine to guide the evolutionary
search process. Cultural algorithms may be perceived as a hybridisation of evolution-
ary, or generally, population-based metaheuristic, with a predefined knowledge base
used as a reference point by certain operators, though it does not fit into the Talbi’s
classification (see Section 1.3.1).

Pseudocode 1.3.1: PSEUDOCODE OF CULTURAL ALGORITHM

population ← initialisePopulation()
knowledgeBase ← initialiseKnowledgeBase(population)
while not stoppingCondition()

evaluations ← evaluate(population)
matingPool ← selection(population, evaluations)
population ← crossover(matingPool)
population ← mutation(population)
population ← influence(population, knowledgeBase)
knowledgeBase ← update(population)

Memetic algorithms Memetic algorithms belong to a class of cultural algorithms
and historically are evolutionary algorithms enhanced by hybridisation with local-
search methods (the first successful approach was made by Pablo Moscato [137],
who hybridised the evolutionary search with a local improvement, using of simulated
annealing to solve Traveling Salesman Problem). The evolutionary algorithm utilises
the local-search method (in the simplest case, the greedy local search or more sophist-
icated local search techniques, such as simulated annealing or tabu search) within its
evolutionary cycle (in the course of evaluation or mutation). A scheme of the memetic
algorithm is shown in Pseudocode 1.3.2. Note that usually only one memetic local
search procedure (Baldwinian or Lamarckian) is used:

• Baldwinian local search according to Baldwin theory predispositions may be in-
herited during reproduction [9]. This method is usually implemented as local
search procedure called in the course of the evaluation process. The evaluated
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individual is assigned the fitness function value computed for one of its pos-
sible descendants (effects of the local-search starting from this individual). First
approaches that may be classified as Baldwinian memetic were oriented on so-
called Baldwin-effect [4, 85]. The attained improvement does not change the
genetic structure (genotype) of the individual that is transferred to the next gen-
eration. The individual is kept the same as before local search, but the selection
is based on the improved fitness after local search. Baldwin effect follows nat-
ural evolution (Darwinian), i.e., learning improves the fitness and selection is
based on fitness. The improvement, in this case, is passed indirectly to the next
generation through fitness.

Pseudocode 1.3.2: GENERAL PSEUDOCODE OF MEMETIC ALGORITHM

population ← initialisePopulation()
while not stoppingCondition()

evaluations ← BALDWINIANEVALUATION (population)
matingPool ← selection(population, evaluations)
population ← crossover(matingPool)
population ← LAMARCKIANMUTATION (population)

function BALDWINIANEVALUATION(population)
return localSearchFitnesses(population)

function LAMARCKIANMUTATION(population)
return localSearchGenotypes(population)

• Lamarckian local search accorgind to Lamarck’s theory characteristics of indi-
viduals acquired in the course of life may be inherited by their descendants [58].
This method is usually implemented as a local search procedure called in the
course of execution of mutation or crossover operator. The search for a mutated
individual is based not only on a stochastic one-time sampling from the solution
space, it may be a much more complex process, being an outcome of the local
search starting from this individual. In the same way the memetic crossover may
be implemented, by trying different combinations of parents’ genotypes, until a
satisfactory is found. In Lamarckian evolution, individuals improve during their
lifetime through local search and the improvement is passed to the next genera-
tion. The individuals are selected based on improved fitness and are transferred
to the next generation with the improvement incorporated in the genotype.
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Although both theories have not been fully verified, metaheuristics based on
them are effective in many problems (see, e.g. [117, 190]). Memetic algorithms retain
exploration properties of evolutionary algorithms with enhanced exploitation based
on the local-search. This makes memetic algorithms faster, but the problem of di-
versity loss arises and must be duly dealt with [138].

In a comparison of Baldwin and Lamarckian learning, Whitley, et al. [190]
showed that utilising either form of learning would be more effective than the clas-
sical genetic algorithm without any local improvement procedure. Though Lamar-
ckian learning is faster, it may be susceptible to premature convergence to a local
optimum as compared to Baldwin learning. Yao [199] examined both Lamarckian
evolution and Baldwin effect in combination with an evolutionary algorithm and
local search. The obtained results show that there is no significant difference between
Lamarckian-evolution-style combination and Baldwin-effect-style combination.

When implementing a memetic algorithm, it must be decided where (in which
phase of evolutionary computation) and when (in which evolutionary cycle) the local
search should be applied. Moreover, it must also be decided which individuals need
to be improved, how long the local search should run and which memetic model
should be used (Baldwinian or Lamarckian)? It is noteworthy that this hybridisation
introduces additional complexity to the evolutionary algorithms, emphasising their
applicability as the last resort methods (cf. [133]).

Krasnogor and Smith [115] provide a formalisation of the means of hybridisation
of evolutionary algorithms with local search methods by introducing a concept of
schedulers. These schedulers are used to decide when and where to introduce the
local search during the evolution process:

• Fine-grained mutation and crossover schedulers can replace the mutation and
crossover operators running the local-search (in this way, e.g. Lamarckian
memetics are implemented).

• Coarse-grained scheduler can replace the selection (in this way, e.g. Baldwinian
memetics are implemented) and may decide which local search methods are
used, which individuals are subject to this process etc.

• Meta-scheduler retains and provides historical information to the local search
method, making possible implementation of tabu-search like techniques.

The memetic algorithm may consist of all schedulers, but whether it becomes
better, or simply more complex, can only may be discovered in the course of experi-
ments.

Memetic algorithms may be perceived as LTH hybrids, according to Talbi’s clas-
sification (see Section 1.3.1), merging population-based (evolutionary) system along
with a local-search technique.
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1.3.3. Immunological metaheuristic techniques

Immunology, which a branch of biomedical science, is situated between medi-
cine and biology, is over 100 years old. Louis Pasteur and Robert Koch are said to
have been its founders, as they were the first to carry-out research on disease-causing
micro-organisms.

The notion of “artificial immune systems” refers to a class of systems based on
ideas, theories and components inspired by the structure and functioning of immune
system of vertebrates [43].

The beginning of artificial immune systems dates back to the 1980s, when a pro-
posal was made to apply theoretical immunological models to machine learning and
automated problem solving [171, 88, 61]. These algorithms received more attention
at the beginning of 1990s (see, e.g. [10, 95]).

First research studies in the field were inspired by theoretical models (e.g. im-
mune network theory) and applied to machine learning, control and optimisation
problems. Computer Immunity by Forrest et al. [69, 67] and Immune Anti-Virus by
Kephart [105, 106] are classical examples.

These works were formative for the field as they provided an intuitive application
domain captivating a broader audience and assisting in differentiating the work as an
independent sub-field.

Modern Artificial Immune systems are inspired by one of three sub-fields: clonal
selection, negative selection and immune network algorithms. The techniques are
used for clustering, pattern recognition, classification, optimisation, and other similar
machine learning problem domains [42]. Below, negative selection and clonal selec-
tion algorithms will be discussed in detail, as they provided inspiration for part of the
research presented later in this monograph, see Chapter 2.

Generally, artificial immune system functions as a classifier, identifying certain
patterns (similar to detecting intruders—antigens in the immune system of verteb-
rates). Therefore, dedicated heuristics to solve classification problems (based on cre-
ating antibodies identifying certain patterns) can be easily implemented. However,
search and optimisation problems may also be solved by an immune approach (after
undertaking certain assumptions, e.g. treating the optima of the goal function as an-
tigens that should be identified) [39].

Immune systems may be perceived as a hybridisation of evolutionary, or gener-
ally, population-based metaheuristic, with an affinity checking mechanism, used in
certain operations, though they do not fit into the Talbi’s classification (see Section
1.3.1).

Clonal selection The clonal selection process serves as an inspiration for a group of
algorithms that may be applied to classification or optimisation problems. The clonal
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selection theory was proposed by Burnet to describe the behaviour and capabilities
of antibodies in acquired immunity [17]. According to this theory, the presence of
antigens causes a selection of the most similar lymphocytes. When the lymphocyte
is selected, it binds with the antigen and proliferates, creating thousands of copies of
itself (affected by small copying errors so-called somatic hypermutation, broadening
the possibilities of detecting the antigens). The lymphocyte creates two main types of
cells: short living plasma cells that help to remove the antigens by producing antibody
molecules, and long-lived memory cells active in a secondary immune response when
the antigen is found again in the organism.

Thus this strategy may be seen as a general learning method, including a pop-
ulation of adaptive information units (representing sample solutions to the problem)
subject to a competitive process based on selection. This selection consists in pro-
liferation with mutation and produces a generation of individuals better that become
fitter to solving the problem.

The general clonal selection algorithm (see Pseudocode 1.3.3) involves a selec-
tion of antibodies (candidate solutions) based on affinity, computed either by match-
ing against an antigen pattern (in classification problem solving) or via evaluation
of the pattern by the cost function (in optimisation problems). Selected antibodies
are subject to cloning, and the number of cloned antibodies is proportional to affin-
ity. At the same time, the hypermutation of clones is inversely proportional to clone
affinity. The resulting set of clones competes with the existing antibody population
for membership in the next generation. In the end, several low-affinity members of
the population are replaced with randomly generated antibodies. When the classific-
ation problem is considered, the memory solution set must be maintained in order to
represent the solution patterns.

Pseudocode 1.3.3: PSEUDOCODE OF CLONAL SELECTION ALGORITHM

population ← initialisePopulation()
while not stoppingCondition()

affinities ← computeAffinities(population)
selected ← selection(population, affinities)
clones ← clone(selected , affinities)
clones ← hypermutate(clones)
clonesAffinities ← computeAffinities(clones)
population ← population ∪ chooseBest(clones, clonesAffinities)
population ← population \ chooseWorst(population, affinities)
population ← partialRandomReplace(population)
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Other algorithms based on clonal selection that are worth mentioning are:
CLIGA algorithm [37], the B cell algorithm [103], and Forrest’s algorithm [68].

Negative selection The negative selection algorithm was inspired by “self-nonself
discrimination” observed in the acquired immune system of vertebrates. The pro-
liferation of lymphocytes during the clonal selection makes possible to generate a
wide range of detectors to cleanse the organism of harmful antigens. What is in this
process, is that self-cells belonging to the organism are avoided and should not be
detected by the lymphocytes in the case of a healthy immune system. In other words,
during the process, no self-reactive immune cells are created. Such a set of antibodies
is achieved during proliferation, due to a negative selection process that selects and
removes the autoimmune cells (that bind with self-cells). This process is observed in
nature during the generation of T-lymphocytes in thymus.

The self-nonself discrimination process, which uses a negative selection, con-
sists in creating the anomaly and change detection system modelling anticipation and
variation based on a certain set of well-known patterns. Thus, an appropriate model
is built by generating patterns that do not match an existing set of available (self or
normal) patterns. The resulting non-normal model is then used to detect the unknown
by matching the newly-received data to the non-normal patterns.

The principles of this algorithm are quite simple (see Pseudocode 1.3.4). After
generating random detectors, they are matched against the set of self-patterns. Those
matching ones are removed, while non-matching are kept in the detector repertoire.
When the repertoire is ready (a certain number of detectors has been reached), then,
based on the set of nonself immune cells, a classification of foreign patterns may be
performed (again, according to the same affinity measure that was used to generate
this set of antibodies).

The first negative selection algorithm was proposed by Forrest [69] and applied
to the monitoring of changes in the filesystem (corruptions and infections by com-
puter viruses), and later formalised as a change detection algorithm [48, 47].

1.4. Agent-based computing

In 1970s, there was a growing interest in the systems, where a task to be solved
was decomposed into smaller parts (subtasks), in order to solve them separately and
later integrate the solution. This approach may be described as distributed problem
solving, and it is usually easy to implement in parallel environment such as multicore
machines, clusters or grids. A typical example of such a system is the master-slave
evolution model [30], where the master delegates computation of the fitness function
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Pseudocode 1.3.4: PSEUDOCODE OF NEGATIVE SELECTION ALGORITHM

self ← set of self patterns
repertoire ← ∅
while not isComplete(repertoire)

do detectors ← generateRandomDetectors()

selfClass ← ∅
nonSelfClass ← ∅
for all d ∈ detectors

if not match(d, repertoire)
then selfClass ← selfClass ∪ {d}
else nonSelfClass ← nonSelfClass ∪ {d}

value to its slaves and waits for the completion of subtasks in order to start another
generation [57].

In the field of multi-agent systems bearing a significant legacy from the distrib-
uted problem solving, distributed individuals (agents) received great attention, mainly
because they were perceived as autonomous beings, being capable of interacting with
their environment and other agents, bearing the features of intelligence.

In fact, during the last decades intelligent and autonomous software agents have
been widely applied in various domains, such as power systems management [128],
flood forecasting [73], business process management [99], intersection management
[53], or solving difficult optimisation problems [120], just to mention a few. The
key to understand the concept of a multi-agent system (MAS) is intelligent interac-
tion (like coordination, cooperation, or negotiation). Thus, multi-agent systems are
ideally suited for representing problems that have many solving methods, involve
many perspectives, and/or may be solved by many entities [196]. That is why, one of
major application areas of multi-agent systems is large-scale computing [181, 14].

Agents play an important role in the integration of artificial intelligence sub-
disciplines, which is often related to a hybrid design of modern intelligent systems
[157]. In most similar applications reported in the literature (see, e.g. [158], [35] for
a review), evolutionary algorithm is used by an agent to aid realisation of some of
its tasks, often connected with learning or reasoning, or to support coordination of
some group (team) activity. In other approaches, agents constitute a management in-
frastructure for a distributed realisation of an evolutionary algorithm [182, 183, 184].

Agent and agent-based system definitions According to one of the most popular
definitions proposed by Wooldridge, an agent is a computer system situated in an
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environment, and capable of undertaking independent, autonomous actions in this
environment in order to fulfil tasks on behalf of its user [195]. Autonomy is perceived
as one of the most crucial features of the agent.

Any computer program that manages a certain apparatus (e.g. a thermostat) or
affects the state of the computer system (e.g. Unix system daemon) may be perceived
as an agent.

It seems that a definition of the agent introduces a new name for some existing,
well-known programming techniques. At the same time, intelligent agents, which are
part of complex systems, bring new quality crossing the borders of already exist-
ing computer systems, enhancing the notion of an object or process with additional,
important features, e.g. [195, 45] helping other agents to fulfil their goals:
• reactivity: agents may perceive their environment and react to changes in that

environment,

• pro-activity: agents may perform tasks based on their own initiative,

• social ability: agents are able to interact with other agents (also with users).
It is noteworthy that fulfilling the goal becomes a raison d’être for an agent. This

is also the most important determining factor in undertaking actions in the environ-
ment by the agent.

The notion of agent system is based directly on the notion of agent. Generally
speaking, an agent system is a system, in which a key abstraction is that of an agent.
Therefore, a multi-agent system is one that consists of a group of agents which inter-
act with one another [98, 62].

Agents act in their environment, and different groups of agents may perform
their tasks in different parts of the environment. In particular, their activities may
overlap. As an example, the possibility of communicating between agents that are
“close” in the environment may be given (of course, their closeness depends strongly
on the notion of neighbourhood, if such a notion was implemented), or direct inter-
action with the environment (e.g. only one agent-robot may pass through the door at
a time) [194].

Main features of the multi-agent systems are, e.g. [45]: distribution, decentral-
isation, interaction, organisation, situatedness, openness, emergency and adaptation.

Agents have also been used in computing systems to enhance the search and
optimisation capabilities with the above-mentioned agency features.

Agent-based management of computing systems One of the possible applica-
tions of agency in computing systems is situated at a technical level. An agent com-
munity may take care of the the management of the distributed system, utilising their
autonomy and auto-adaptation to implement, e.g. scheduling or load balancing.
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Distributed management of the system deployed in a cluster or grid requires a
definition of node topology, neighbourhood and migration policies that are affected
by a current load of nodes. Well-known standards for constructing multi-agent en-
vironments (such as FIPA [64]) do not provide such capabilities. Another important
functionality missing in many platforms is the notion of distance between agents,
measured as a factor of communication throughput.

Grochowski and Schaefer [182, 183, 184] proposed Smart Solid Architecture
(see Fig. 1.1) that supports these requirements. This architecture is similar to EMAS
architecture (cf. Section 2.2.1), where agents are also homogeneous.
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Figure 1.1. Smart solid architecture

However, in this approach the task is divided into subtasks and these are del-
egated to agents which are to solve them. Agents in this model accomplish two
goals: perform computation of the task and try to find a better execution environ-
ment (computing node) for the task, based on the load and throughput information.
It is noteworthy that agents do interact with one another, in order to be able to solve
the assigned task. Agents may undertake the following actions:
• execute the task in order to solve it and communicate the results to other agents,

• denominate the load requirements,

• based on the requirements compute the possible migration capabilities of the
agent,

• further divide the task, create the child agents,

• migrate to another execution environment carrying the task.
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An effective scheduling algorithm was also introduced in the discussed environ-
ment and tested by Schaefer, Grochowski and Uhruski, utilising the natural inspira-
tion of the diffusion mechanism [81]. This system was successfully applied e.g. in
the problem of mesh generation for computed-aided engineering applications [164].

Agent-based computing system architecture Another means of connecting to-
gether agency and computing systems merges these two notions. In this approach,
not only solving of the part of the problem is delegated to the agent, but the agent
becomes a part of computing system.

Recalling the most important features of multi-agent systems (MAS) that are
adopted by the researchers [62] and can be regarded as definitions of the term:
• a multi agent system is constituted by a set of agents and a sub-system called

environment;
• agents perform certain actions that are characteristic to them, resulting in

changes of themselves or the environment;
• some of elementary agents’ actions form mechanisms perceived as specific in

multi-agent systems in general, e.g. negotiation, communication, exchange of
resources etc.;
• providing that there is a structure embedded in the environment (a graph) reflect-

ing spatial phenomena of the system, it forms a base for migration of agents;
• an agent that is treated as a black box (observed from the outside) may have

some human attributes like autonomy, intelligence etc.
Adding the following assumptions that:
• there is a relatively large number of agents in the system,
• there are some mechanisms incorporated into the system that are used for gener-

ating and removing agents, causing dynamic changes in the number of agents,
an interesting type of system called a mass multi-agent system may be obtained [50].
Such system may be used for simulation purposes due to their granularity as there
exist of a large number of similar objects manifesting some kind of autonomy. It can
also be used as a platform facilitating the realisation of problem-solving techniques,
in which case it is a called computing multi-agent system (CMAS) and will constitute
a base for further considerations (see Fig. 1.2 and refer to Section 2.1).

From these two approaches, where one is focused on agent-based management
of the computation process, and the other is based on decomposition of the problem,
entrusting its parts to agents, the latter has become the main inspiration for the com-
puting systems discussed in this monograph (see Chapter 2). However, the former
one will also be observed (though not discussed in detail) in the formal definition
of the system, constituting an agent-based management infrastructure (see Sections
2.2.4, 2.3.3).

40



agent

CMAS

D
a

ta

R
e

s
u

lt
s

agent

problem
part 1

problem
part 2

Figure 1.2. Computing multi-agent systems (CMAS)

1.5. Vacant niches in theory and practice

Selected metaheuristics that were presented in this chapter do not exhaust, how-
ever, a plethora of such methods that are available nowadays (cf., e.g. [178]). The
important thing is that these methods are often hybridised, and the resulting sys-
tems become a valuable weapons of choice when dealing with complex “black-box”
problems. Among popular approaches, hybrid systems utilising tabu search with
other metaheuristics (see, e.g. [179, 186, 185]), or simulated annealing (see, e.g.
[201, 118, 119]) yielding successful results may be considered. Therefore, further
search for hybrid systems is worth undertaking because looking for synergy of differ-
ent approaches may lead to obtaining efficient methods in solving particular difficult
problems.

In particular, agent-oriented hybrids seem to have much potential, as the fea-
ture of autonomy, makes it possible to employ various techniques not exploited be-
fore. Hybridisation with different local search methods is of course possible (in-
cluding tabu search, simulated annealing, or different memetic-oriented approaches).
Moreover, particular agents may decide whether to use or not a certain local search
operator or any other technique, to adapt parameters of their search operators in order
to maintain a balance between exploration and exploitation of the search space.

Designing complex search methods needs not only employing sufficient methods
for validation of their outcome, but also verification of their design and analytical
features.
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Several formal models aimed at proving different features of evolutionary me-
taheuristics have been constructed. One of the first and important models of meta-
heuristic methods was Michael Vose’s SGA model [187], which proves that simple
genetic algorithm (SGA) with the population of a fixed size [78] can be modelled
by a Markov chain, and after further assumption that the mutation rate is positive,
this chain is ergodic. This result, which formally confirms that SGA is a well-defined
global optimisation algorithm (belonging to Las Vegas class [91]), become an inspir-
ation for preparing a Markov-chain based models for agent-based metaheuristics (see
Section 3) and proving their ergodicity feature.

Other approaches to model evolutionary algorithms, which are worth mention-
ing, are different models for single-population, e.g. [40, 175, 79, 124, 153, 154, 155]
and parallel evolutionary algorithms, e.g. [1, 31, 63, 180]). Using some of these mod-
els, the researchers (e.g. [156]) have proved selected practical features such as first
hitting time (see, e.g. [84, 11]) for simple settings (e.g. evolution strategy 1 + 1 solv-
ing the problem of optimisation of a convex function).

There also exist other extensions of Vose’s model dealing with hybrid metaheur-
istics (see, e.g. [111, 29, 163]). Though the formal proofs of asymptotic features are
unavailable with one extension, the ergodicity feature has been proved by Schaefer,
et al., for parallel Simple Genetic Algorithm in [161], as an extension of the works
by Vose.

Apart from these systems, more advanced search and optimisation techniques
like memetic or agent-based computational systems lack such models, with some
notable exceptions. For example, [198] considers an abstract model of memetic al-
gorithms based on the application of gradient-based local search to the whole popula-
tion on a generation-basis and provides a sufficient condition for quasi-convergence
(i.e., asymptotically finding one of the best k solutions in the search space, where k is
the population size). Also, [139] considers adaptive MAs and indicate that only static,
greedy and global adaptation strategies (i.e, strategies that use no feedback, check all
possible memes and pick the best one, or use a complete historical knowledge to
decide on the choice of meme respectively) are globally convergent using elitist se-
lection mechanisms. This stems from [152, 32] and cannot be proved in general for
local adaptive strategies.

In general, there is still a lack of a comprehensive stochastic model of the wide
class of population-based, agent-based, cultural or memetic computing systems. It
may result from the fact that such systems are still poorly defined and formalised,
which of course has to be done before making any attempt to analyse their features
analytically. Moreover, these systems are complex, so thorough preparations for de-
tailed formal model leading to significant theoretical results are complicated and very
time-consuming.
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It is easy to see that careful preparation of general models for such systems will
surely lead to a better understanding of them and it is necessary to make sure that one
does not only propose a complex metaheuristic, but provides a potential user with
a firm background, proving that it makes sense to use such a complex computing
method. At the same time, above-mentioned models of metaheuristics (cf. Rudolph
[156]), focused on proving certain features (e.g. first hitting time), considering even
simple, convex functions, should not be underestimated. Again, referring to the well-
known “no free lunch theorem”, it is hardly probable that one model can fulfil all
the researchers’ needs. Therefore various approaches to modelling of metaheuristics,
offering results of different types will always be valuable.



2. Evolutionary multi-agent systems

Practice proves that an evolutionary algorithm works properly (e.g. in terms of
searching for a globally optimal solution) if the population consists of very different
individuals, then so-called diversity in the population is preserved [7]. Yet many al-
gorithms tend to prematurely lose this crucial feature and therefore there is a risk that
the population may get stuck in some part of the search space (e.g. in the basin of
attraction of a certain local extremum instead of searching for a global one).

The situation described above may be explained by the fact that the model of
evolution employed by simple evolutionary algorithms lacks many important features
observed in organic evolution [8]. This includes dynamically changing environmental
conditions, lack of global knowledge, no generational synchronisation, coevolution
of species, evolving genotype-phenotype mapping, etc. That is why many variants of
classical evolutionary algorithms were proposed, introducing additional mechanisms
following the most important phenomena in evolutionary biology. Among these, pop-
ulation decomposition and coevolution had the most inspiring effect on the genesis
of evolutionary multi-agent systems.

In 1996, Krzysztof Cetnarowicz [34] proposed an evolutionary multi-agent sys-
tem (EMAS), which is an agent-oriented computing metaheuristic with interesting
features like distributed selection and lack of global control. Since then the idea of
EMAS has been applied to different problems (e.g. single, multimodal and multicri-
teria optimisation). EMAS turned out to be a very good base for introducing dif-
ferent extensions and hybridisation (e.g. using memetic or immunological mechan-
isms), and encouraged to conduct research at different levels (e.g. formal modelling
[29, 163], framework development [60], experimental research [21, 145, 24]). There-
fore, EMAS is the main topic of this monograph, aimed at exploiting its most prom-
ising features (i.e. in-depth background, formal definition, formal proofs of selected
features and various experimental results).

This chapter is dedicated to the EMAS concept and its variations. First, possible
architectures of agent-based computing systems are identified. Next, an idea of evolu-
tionary multi-agent computing system (and its memetic version), along with detailed
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formal modal of its structure and behaviour is presented. Later, the immunological
variant of EMAS is presented, retaining the same presentation structure. Finally, the
need for formal verification of the concept is stated.

2.1. Agent-based architectures of computing systems

Starting with a multi-agent perspective (see Section 1.4), three types of com-
puting agent system architectures, which form consecutive levels of increasing com-
plexity, can be distinguished. The main purpose of these architectures is to serve
as a means of incorporation of computing methods into cooperating, autonomous
entities—agents.

Figure 2.1 presents an example of a classical approach to hybrid computing
system—an evolutionary system using a stochastic hill-climbing algorithm constitut-
ing in fact a memetic system. Each individual represents a solution, and the evolving
population explores and exploits the feasible search space. The whole system is em-
bodied in an agent utilising this idea to adapt to the specific environment [109].
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Figure 2.1. A hybrid computing system located in a single agent

Evolutionary multi-agent system shown in Figure 2.2 can be seen as next step in
possible specialisation [34]. In this case, evolutionary processes work at a population
level—agents searching for a solution to a certain problem are able to generate new
agents and may be eliminated from the system on the basis of adequately combined
evolutionary operators. The predefined distributed selection mechanism increases the
possibility of reproduction for the best agents (in terms of fitness function value).
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The result of the search is formed as a set of results obtained by single agents. The
architecture of EMAS is homogeneous, which means that the agents are identical as
far as an algorithm and built-in actions are considered [109].

EMAS may be easily hybridised with local search techniques forming a memetic
variant of the base system. In this case, each agent performs local search in the course
of its life in the system. This may be carried out during reproduction or at arbitrarily
chosen moments.
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Figure 2.2. A population of homogeneous agents

The highest specialisation level is reached when the agent population is het-
erogeneous (see Figure 2.3). Some of them may use stochastic hill-climbing, the
others—tabu-search etc. The result is stipulated as a consequence of the outcome of
the negotiation process among the agents. Many different techniques and protocols
can be applied to this purpose. It may be said that these systems closely approach
typical multi-agent ones operating in the computer network environment [109].

EMAS (including its memetic variant, see Section 2.2.1) and iEMAS (see Sec-
tion 2.3) described in this monograph, belong to the second and third class, respect-
ively.

2.2. Evolutionary multi-agent system

Evolutionary processes are by nature decentralised and therefore evolutionary
processes in a multi-agent system at a population level may be easily introduced. It
means that agents are able to reproduce (generate new agents), which is a kind of
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cooperative interaction, and may die (be eliminated from the system), which is the
result of competition (selection). A similar idea with limited autonomy of agents loc-
ated in fixed positions on some lattice (like in a cellular model of parallel evolutionary
algorithms) was developed by Zhong et al. [200]. The key idea of the decentralised
model of evolution in EMAS [108] was to ensure full autonomy of agents.

Such a system consists of a relatively large number of rather simple (reactive),
homogeneous agents, which have or work out solutions to the same problem (a com-
mon goal). Due to computational simplicity and the ability to form independent sub-
systems (sub-populations), these systems may be efficiently realised in distributed,
large-scale environments (see, e.g. [28]).

The formal model presented in this section is recalled after Byrski, Schaefer,
Smołka, Cotta [25].

2.2.1. EMAS concept

Leaving aside for a moment the formal definition of EMAS, the system can be
described as follows.

Agents in EMAS represent solutions to a given optimisation problem. They are
located on islands representing distributed structure of computation. The islands con-
stitute local environments, where direct interactions among agents may take place. In
addition, agents are able to change their location, which makes it possible to exchange
information and resources all over the system [108].
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In EMAS, phenomena of inheritance and selection—the main components of
evolutionary processes—are modelled via agent actions of death and reproduction
(see Fig. 2.4). As in the case of classical evolutionary algorithms, inheritance is ac-
complished by an appropriate definition of reproduction. Core properties of the agent
are encoded in its genotype and inherited from its parent(s) with the use of vari-
ation operators (mutation and recombination). Moreover, an agent may possess some
knowledge acquired during its life, which is not inherited. Both inherited and ac-
quired information (phenotype) determines the behaviour of an agent. It is noteworthy
that it is easy to add mechanisms of diversity enhancement, such as allotropic spe-
ciation (cf. [30]) to EMAS. It consists in introducing population decomposition and
a new action of the agent based on moving from one evolutionary island to another
(migration) (see Fig. 2.4).
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Figure 2.4. Evolutionary multi-agent system (EMAS)

Assuming that no global knowledge is available, and the agents being autonom-
ous, selection mechanism based on acquiring and exchanging non-renewable re-
sources [34] is introduced. It means that a decisive factor of the agent’s fitness is still
the quality of solution it represents, but expressed by the amount of non-renewable
resource it possesses. In general, the agent gains resources as a reward for “good” be-
haviour, and looses resources as a consequence of “bad” behaviour (behaviour here
may be understood as, e.g. acquiring sufficiently good solution). Selection is then
realised in such a way that agents with a lot of resources are more likely to repro-
duce, while a low level of resources increases the possibility of death. So according
to classical Franklin’s and Graesser’s taxonomy—agents of EMAS can be classified
as Artificial Life Agents (a kind of Computational Agents) [71].
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To recapitulate, the main advantage of the approach in this discussion is that
it covers various specialised evolutionary techniques in one coherent model, which
enables the following:
• local selection allows intensive exploration of the search space, and explicitly

defined living space facilitates implementation in a distributed computational
environment, which is similar to parallel evolutionary algorithms,

• evaluation of agents, or more generally, the way a phenotype (behaviour of the
agent) is developed from a genotype (inherited information) depends on its in-
teraction with the environment, similarly to coevolutionary algorithms.
Many optimisation tasks, which have already been solved with EMAS and its

modifications, have yielded better results than certain classical approaches. They
include, among others, optimisation of neural network architecture [22], multi-
objective optimisation [169], multimodal optimisation [54] and financial optimisa-
tion [55]. EMAS has thus been proved to be a versatile optimisation mechanism in
practical situations. A summary of EMAS-related review has is given in [19].

EMAS may be held up as an example of a cultural algorithms, where evolu-
tion is performed at the level of relations among agents, and cultural knowledge is
acquired from the energy-related information. This knowledge makes it possible to
state which agent is better and which is worse, justifying the decision about reproduc-
tion. Therefore, the energy-related knowledge serves as situational knowledge (see
Section 1.3.2). Memetic variants of EMAS may be easily introduced by modifying
evaluation or variation operators (by adding an appropriate local-search method).

The idea of memetic EMAS consist in putting together a local search technique
and the evaluation or variation operators utilised in EMAS. Therefore, implementa-
tion of Baldwinian and Lamarckian memetics in EMAS may be easily carried out in
the following way:
• Baldwinian memetics: this implementation is done in much the same way as

in classical evolutionary computing where in the course of evaluation of a a
certain individual, the actual returned fitness is computed for one of its potential
descendants (after running the local search procedure in the genotype domain,
starting from the evaluated individual). Usually this is an iterative process that
involves many mutations, or using any other dedicated local search technique.
The result returned is the fitness of the best encountered genotype, while the
genotype of the evaluated individual remains unchanged.

• Lamarckian memetics: agent may improve its genotype (by running a local
search procedure in the genotype domain, starting from the evaluated individual,
similarly as in the case of Baldwinian memetics). Usually this is an iterative
process, involving many mutations, or using any other dedicated local search
technique. The result returned is the best encountered genotype. In the case of

49



Lamarckian memetics, the genotype of the evaluated individual is changed. This
procedure may be performed either during the reproduction or at the arbitrarily
chosen moments of agent’s life, depending solely on agent’s own decision.
Detailed formal model of EMAS is given in the next section.

2.2.2. Formal definition of EMAS

The structure and behaviour of EMAS is described in this section, according to
a model presented in [163] that was refined and extended in [25].

Preliminaries As stated in Section 2.2.1, computing agents in EMAS may be seen
as autonomous individuals. Each agent is capable of observing its environment by
gathering important information, making decisions which affect its activity, and per-
forming actions leading to introducing changes in the system state see, e.g. [96, 97].

Each agent is assigned a genotype that belongs to the finite universum U, #U =
r < +∞ which can be the a set of binary strings, real numbers or other codes provid-
ing basis for solving particular global optimisation problem. Agents are assigned to
locations (islands) and can migrate between them.

Genetic operations performed on agents’ genotypes, such as crossover and muta-
tion, are practically similar to those used in classical evolutionary algorithms and lead
to creating a new agent (see Section 2.2.3). The EMAS agent can also create its off-
spring, using the predefined action of cloning with mutation.

As described in the previous section, the selection mechanism is based on the
existence of a non-renewable resource called life energy, which is gained and lost
when agents perform actions (see [108]).

EMAS has the following characteristic features:
• Quasi-signature of an agent: it is composed of its (invariant) genotype gen and

the numerical identifier of the copy n that is changed during the migration.

• Fitness function: the function ψ : U → [0,M ] related in some way to the object-
ive Φ where again R+ 3M < +∞. In the simplest case ψ(gen) = Φ(η(gen)),
where η : U → D is the decoding function.

• Variable location of agents: active EMAS agents are present in locations de-
scribed by a set of immutable integer labels Loc = {1, . . . , s}. The locations are
linked together by channels along which agents may migrate from one location
to another. The symmetric relation Top ⊂ Loc2 determines the topology of loc-
ations. It is assumed that the connection graph 〈Loc, Top〉 is coherent and does
not change during the system evolution.

• Dynamic collection of agents: agents belong to the predefined finite set Ag,
which can at every moment be one-to-one mapped into the set U × P , where
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P = {1, . . . , p} and p is assumed to be the maximal number of agents containing
the same genotype. In other words, each agent aggen,n ∈ Ag contains one poten-
tial solution to a given problem encoded as gen ∈ U . More than one agent may
be present in the system containing this solution and the index n ∈ P is used
to distinguish them. Furthermore, it is assumed that each location has its own
separate subset of admissible genotype copy numbers Pi, i.e. P =

⋃
i∈Loc Pi,

Pi ∩ Pj = ∅ for i 6= j and n ∈ Pi as long as the agent with the temporary copy
number n resides at i.

• Variable energy of agents: each agent may possess only one of the following
quantised energy values: 0,∆e, 2 ·∆e, 3 ·∆e, . . . ,m ·∆e.

Although a pair (gen, n) is not a true identifier because of the variability of its
second component n, it properly distinguishes different agents at any time-moment.
Reference to a certain agent will be given as: agent aggen,n remembering that this
notation is time-dependent. Note that in the context of finding the objective function
minimisers, the identity of agents (i.e. solution holders) is less important. Thus the
crucial agent attributes are the genotype (and the fitness as its derivative) and the life
energy (see the sequel), whereas the copy number plays only an auxiliary role. On the
other hand, if this approach was to be aligned one with the Belief-Desire-Intention
(BDI) model [148], a true agent identifier could be constructed by means of a quasi-
signature as the composition of the agent’s genotype with the sequence of the agent’s
copy numbers at subsequent moments, putting 0 at the moments when the agent is
active. However, it is worth noting that such an identifier would not be very useful
unless it was stored in a globally synchronized repository, and the need of the global
synchronisation would, in turn, prevent the concurrent performance of some crucial
EMAS actions.

EMAS state The following three-dimensional incidence and energy matrices x ∈
X with s layers (corresponding to all locations) x(i) = {x(i, gen, n), gen ∈ U, n ∈
P}, i ∈ Loc will provide a basis for the description of the system state. The layer
x(i) will contain energies of the agents in the i-th location. In other words, the con-
dition x(i, gen, k) > 0 means that the k-th clone of the agent carrying the gene
gen ∈ U is active, its energy equals x(i, gen, k) and it may be found in i-th location.

Now, the following coherency conditions are introduced:

• (·, j, k)-th column contains at most one value greater than zero, which means
that the agent with the k-th copy of the j-th genotype may be found in only one
location at a time, whereas other agents containing copies of the j-th genotype
may be present in other locations;
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• entries of incidence and energy matrices are non-negative x(i, j, k) > 0 for 1 6
i 6 s, 1 6 j 6 r, 1 6 k 6 p and

∑s
i=1

∑r
j=1

∑p
k=1 x(i, j, k) = 1, which

means that the total energy of the whole system is constant and equal to 1;
• x(i, gen, n) can be positive only for n acceptable in the location i, i.e. n ∈ Pi;
• each layer x(i) has at most qi values greater than zero, denoting the maximal

capacity of the i-th location and, moreover, the quantum of energy ∆e is less
than or equal to the total energy divided by the maximal number of individuals
that may be present in the system,

∆e 6
1∑s
i=1 qi

, (2.1)

which makes it possible to achieve the maximal population of agents in the sys-
tem;
• reasonable values of p should be greater than or equal to 1 and less than or equal

to
∑s

i=1 qi; it is assumed that p =
∑s

i=1 qi, which assures that each configuration
of agents in locations is available, in respect of the total number of active agents∑s

i=1 qi; increasing p over this value does not enhance the descriptive power of
the presented model;
• the maximal number of copies for each location #Pi should not be less than
qi in order to make possible for the system to reach a state in which particular
location is filled with clones of one agent; on the other hand due to the previous
assumption #Pi cannot be greater than qi; therefore it is finally assumed that
#Pi = qi.
Gathering all these conditions, the considered set of three-dimensional incidence

and energy matrices constituting the EMAS space of states may be described:

X =

{
x ∈ {0,∆e, 2 ·∆e, 3 ·∆e, . . . ,m ·∆e}s·r·p,

subject to: ∆e ·m = 1,

s∑
i=1

r∑
j=1

p∑
k=1

x(i, j, k) = 1,

x(i, j, k) = 0 for 1 6 i 6 s, 1 6 j 6 r, k 6∈ Pi,
r∑
j=1

p∑
k=1

[x(i, j, k) > 0] 6 qi for 1 6 i 6 s,

s∑
i=1

[x(i, j, k) > 0] 6 1 for 1 6 j 6 r, 1 6 k 6 p

}
(2.2)

where [·] is the indicator function, ie. [true] = 1 and [false] = 0.

52



Structure and behaviour of EMAS EMAS may be modelled as the following
tuple:

〈U,Loc, Top,Ag, {agseli}i∈Loc, locsel, {LAi}i∈Loc,MA, ω,Act〉, (2.3)

where:

MA (Master Agent) is used to synchronise the work of locations; it allows to per-
form actions in particular locations; this agent is also used to introduce the
necessary synchronisation into the system;

locsel : X →M(Loc) is a function used by MA to determine which location
should be permitted to perform the next action;

LAi (Local Agent) is assigned to each location; it is used to synchronise the work
of Computing Agents (CA) present in the location; LAi chooses the CA and
allows it to evaluate a decision and perform the action, at the same time re-
questing permission from MA to perform this action;

agseli : X →M(U × P ) is a family of functions used by LAi to select the CA
that may perform the action, such that each location i ∈ Loc has its own func-
tion agseli; probability agseli(x)(gen, n) vanishes when the agent aggen,n is
inactive in the state x ∈ X or is present in location different from i-th one
(n /∈ Pi);

ω : X × U →M(Act) is a function used by agents to select actions from the set
Act; both symbols will be explained later.

Act is a predefined, finite set of actions.

Hereafter M(·) stands for the space of probabilistic measures. Moreover, the
following convention will be used to describe the discrete probability distributions
a : X × Par →M(A) on the set A, depending on the state x ∈ X and an optional
parameter p ∈ Par.
• a(x, p)(d) is the probability of d ∈ A (lower-case letter), assuming the current

state x and the parameter p. It simplifies a more rigorous notation a(x, p)({d}).
• a(x, p)(W ),W ⊂ A is the probability of set W (upper-case letter).

The names a,A, Par are of course generic. The variables d and p may also
be defined as tuples. In the case of probability distribution on the finite set A, this
notation is unambiguous.

The population of agents is initialized by means of introductory sampling. This
may be regarded as a one-time sampling from X , according to a predefined probabil-
ity distribution (possibly the uniform one) fromM(X). Each agent starts its work im-
mediately after being activated. At every observable moment only one agent present
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in each location gains the possibility of changing the state of the system by executing
its action.

The function agseli is used by LAi to determine which agent present in the
i-th location will be the next one to interact with the system. After being chosen,
the agent aggen,n chooses one of the possible actions according to the probability
distribution ω(x, gen). Note that there is a relationship of this probability distribution
and the concept of fine-grain schedulers introduced into a syntactic model of memetic
algorithms in [114]. It must be noted that the selection of action by all agents, which
carry the same genotype gen in the same state x, is performed according to the same
probability distribution ω(x, gen) and does not depend on the genotype copy number
n. In the simplest case, ω returns the uniform probability distribution over Act for all
(x, gen) ∈ X × U .

Next, the agent applies to LAi for the permission to perform this action. When
the necessary permission is granted, the agent aggen,n performs the action after
checking that a condition defined by formula (2.5) has been fulfilled. If during the
action the agent’s energy is brought to 0, this agent suspends its work in the system
(it becomes inactive).

MA manages the activities of LAi and allows them to grant their agents per-
mission to carry out requested tasks. The detailed managing algorithm based on the
rendezvous mechanism [86] is described in Section 2.2.4.

A subset of states in which the agent aggen,n is active is denoted as:

Xgen,n = {x ∈ X | ∃ l ∈ Loc : x(l, gen, n) > 0} , (gen, n) ∈ U × P (2.4)

Each action α ∈ Act will be represented as a pair of function families
({δgen,nα }(gen,n)∈U×P , {ϑgen,nα }(gen,n)∈U×P ). The functions

δgen,nα : X → M({0, 1}) (2.5)

make it possible to take a decision, to perform the action. The action α is performed
with probability δgen,nα (x)(1) by the agent aggen,n at state x ∈ X and rejected with
probability δgen,nα (x)(0). Because the action may be invoked only by the active agent,
the function δgen,nα always has to return a negative decision for all x ∈ X \ Xgen,n

and only the restriction δgen,nα |Xgen,n constitutes the crucial part of this function, so

δgen,nα (x) =

{
δgen,nα |Xgen,n x ∈ Xgen,n

(1, 0) x ∈ X \Xgen,n.
(2.6)

Next, the formula
ϑgen,nα : X →M(X) (2.7)

54



defines non-deterministic state transition functions, therefore ϑgen,nα is caused by ex-
ecuting action α by the agent aggen,n. The value of ϑgen,nα (x)(x′) denotes the prob-
ability of passing from the state x to x′ resulting from the execution of the action α
by the agent aggen,n. The function is only invoked if the agent is active, therefore it
is enough to define a restriction ϑgen,nα |Xgen,n for each action α, and let it take an
arbitrary value on X \Xgen,n.

If any action is rejected, the trivial state transition

ϑnull : X →M(X) (2.8)

such that for all x ∈ X

ϑnull(x)(x′) =

{
1 if x = x′

0 otherwise
(2.9)

is performed.
The probability transition function for the action α performed by the agent with

the n-th copy of the genotype gen

%gen,nα : X →M(X) (2.10)

is defined by the formula

%gen,nα (x)(x′) = δgen,nα (x)(0) · ϑnull(x)(x′) + δgen,nα (x)(1) · ϑgen,nα (x)(x′), (2.11)

where x ∈ X denotes the current state, and x′ ∈ X is the consecutive state resulting
from the conditional execution of α.

Note that it is formally possible to consider a very large (yet finite) setAct, com-
prising all actions up to a certain description length (using a Gödel numbering [77]
or any appropriate encoding). This implies that this set may be implicitly defined by
such an encoding, allowing much flexibility in the set of actions available (a connec-
tion can be drawn with multi-meme algorithms [113]).

Observation 2.2.1 ([25, Observation 2.1]). Given the agent aggen,n ∈ Ag it is
enough to define two restrictions δgen,nα |Xgen,n and ϑgen,nα |Xgen,n in order to es-
tablish the probability transition function %gen,nα associated with the execution of the
action α—see Eq. (2.10) and Eq. (2.11).

The agents’ actions may be divided into two distinct types:
• global—changing the state of the system in two or more locations, so only one

global action may be performed at a time,
• local—changing the state of the system in one location considering only the

state of locally present agents; only one local action for one location may be
performed at a time.
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Therefore, the Act set is divided in the following way:

Act = Actgl ∪Actloc (2.12)

Informally speaking, if the location i ∈ Loc contains the agent performing a
certain local action α ∈ Actloc, only the entries of layer x(i) of the incidence and
energy matrix are changed (other changes have zero probability). Moreover, these
actions do not depend on other layers of x. The action null is obviously “the most
local one”, because it does not change anything at all.

The above description can be formalised as follows:

Definition 2.2.1 ([25, Definition 3.1]). The action α ∈ Act is local (α ∈ Actloc) if,
and only if, for any agent which can execute the action (i.e., ∀ (gen, n) ∈ U ×P ) we
have:

1. α does not change anything except for part of the state that describes the location
l in which aggen,n is performing the action α (i.e., x(l) being the l−th layer in
matrix x), so

∀ x ∈ X : %gen,nα (x)(xnext) = 0, (2.13)

for xnext ∈ X such that ∃ i 6= l : xnext(i) 6= x(i) and xnext denotes one of
the states which is supposed to be reached at the step immediately after state x
appears;

2. α is independent upon any other layers of x which means that

∀ x1, x2 ∈ X,x1(l) = x2(l),

∀ x1,next, x2,next ∈ X,x1,next(l) = x2,next(l)

and for each i 6= l

x1(i) = x1,next(i), x2(i) = x2,next(i)

%gen,nα (x1)(x1,next) = %gen,nα (x2)(x2,next). (2.14)

All other actions are considered global (elements of Actgl).

What makes local actions important is the fact that if they are executed by agents
present in different locations, they commute. Detailed formal proof of the local ac-
tions commutativity is provided in [25].

Local actions must be mutually exclusive within a single location, and global
actions are mutually exclusive in the whole system, so only one global action may
be performed at a time in the system, but many local actions (one in each location at
most) may be performed at the same time.
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2.2.3. EMAS actions

Consider the following set of actions [25]:

Act = {get, repr,migr, clo, lse}, (2.15)

where get lets a better agent take a part of life energy from a worse agent and may
make the agent with low energy inactive, repr activates the agent as an offspring
agent in the system, migr denotes migration of agents between two locations, clo
activates the agent as a mutated clone agent in the system, whereas lse allows the
local search methods to incorporate into EMAS. Such sample set of actions cover
almost all search activities appearing in GA and MA as selection, mutation, crossover
and local optimisation.

Denote by l the location of the current active agent containing the n-th copy of
the genotype gen performing the action (i.e., x(l, gen, n) > 0). Notice that if the
particular state x is established, the location of each active agent is unambiguously
determined. Lower index “next” will be used to denote the state which may appear in
the next step assuming some current state, e.g. xnext is the subsequent possible value
of x.

Action performing distributed selection The energy transfer action get is based
on the idea of agent rendezvous. Agents meet one of their neighbours (it chooses
randomly one of its neighbours—agents from the same location or “island”) and
during this meeting a quantum of energy ∆e flows in direction described by a certain
stochastic function cmp. The most probable direction is from the worse evaluated
agent to the better one, which may be considered a kind of a tournament (see e.g.
[131]).

By Observation 2.2.1 the following may be obtained:

Observation 2.2.2 ([25, Observation 6.1]). The probability transition function
%gen,nget : X →M(X) associated with action get is determined by:

δgen,nget |Xgen,n (x)(1) =

{
1 if NBAGl,gen,n 6= ∅
0 otherwise

(2.16)

NBAGl,gen,n ={
(j, k) : x(l, j, k) > 0 and (j 6= gen or k 6= n)

}
(2.17)
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ϑgen,nget |Xgen,n (x)(x′) =
1

#NBAGl,gen,n

∑
(gen,n)∈NBAGl,gen,n(

cmp(gen, gen′)(0) · [x′ = next(x, gen, n, gen′, n′)]+

cmp(gen, gen′)(1) · [x′ = next(x, gen′, n′, gen, n)]

)
(2.18)

cmp : U × U →M({0, 1}) (2.19)

next(x, a, b, a′, b′) = xnext :

xnext(i, j, k) =


x(i, j, k)−∆e if j = a and k = b

and i = l
x(i, j, k) + ∆e if j = a′ and k = b′

and i = l
x(i, j, k) otherwise.

(2.20)

Explanation. The decision of the action get, δgen,nget , defined by Eq. (2.16), depends
upon the existence of at least one neighboring agent in the same location and is per-
formed by checking the contents of the NBAGl,gen,n set defined by Eq. (2.17). The
arbitrary state of the system when the decision is evaluated by the agent aggen,n is
denoted by x ∈ X .

The transition function uses the function cmp to compare the meeting agents.
This is a probabilistic function that takes advantage of the fitness function ψ in order
to compare the agents. The better fitness the genotype has, the greater probability that
it will get the quantum of energy from its neighbour. A lower probability is assigned
to the reverse flow.

Technically, if cmp(gen, gen′) is sampled as 0 then agent with the genotype
gen increases its energy and the second agent with genotype gen′ looses its energy.
If cmp(gen, gen′) takes the sampled value 1, the energy is passed in the opposite
direction.

In the case of the positive evaluation of this decision, the state transition de-
scribed by Eq. (2.18) is performed. This formula comes from Bayes’ theorem, which
makes us check all possible agents from NBAGl,gen,n. For each agent contained
in this set a different state transition is performed as described by the function
next(·, ·, ·, ·, ·). The direction of the energy transfer is determined using the function
cmp.
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The state transition function is constructed according to Eq. (2.20). The incid-
ence matrix xnext ∈ X is obtained from x by changing two entries related to a pair
of agents aggen,n, aggen′,n′ that exchanged energy.

Observation 2.2.3 ([25, Observation 6.2]). The value of the probability transition
function imposed by Eqs. (2.10), (2.11), (2.16)–(2.20) performed by the agent aggen,n
present in the location l, depends only on the elements of the system state contained in
its location. The action getmay only introduce changes in the state entries associated
with the location l. In other words, assume that x is a current state, all states that
differ from x outside the l-th layer have a null probability in the next step.

Explanation. Observation 2.2.3 stems from Eqs. (2.10), (2.11), (2.16)–(2.20). Part of
them that introduce changes in the state entries depends on and refers only to the
entries in the current l-th location. All other entries are simply rewritten to the next
state.

Actions inspired by the genetic operations A decision on the reproduction ac-
tion repr is based on the idea of the agent rendezvous (similarly to get). An agent
with sufficient energy (above a certain predefined threshold erepr) meets one of its
neighbours and creates offspring agent based on their solutions. The genotype of the
offspring agent is selected according to the predefined family of probability distribu-
tionsmix : U×U →M(U) associated with the sequence of genetic operations (e.g.
crossover followed by mutation, see [187]). In particular, mix(gen, gen′)(gen′′) de-
notes the probability that gen′′ is born of the parents gen and gen′. A part of the
parents’ energy (e0 = n0 ·∆e, n0 is even) is passed onto the offspring agent.

By Observation 2.2.1 the following may be obtained:

Observation 2.2.4 ([25, Observation 6.3]). The probability transition function
%gen,nrepr : X →M(X) associated with the action repr is determined by:

δgen,nrepr |Xgen,n (x)(1) =


1 if x(l, gen, n) > erepr and RPAGl,gen,n 6= ∅

and
∑r

j=1

∑
k∈Pl [x(l, j, k) > 0] < ql

0 otherwise
(2.21)

RPAGl,gen,n =
{

(gen′, n′) ∈ NBAGl,gen,n;x(l, gen′, n′) > erepr
}

(2.22)
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ϑgen,nrepr |Xgen,n (x)(x′) =

1

#RPAGl,gen,n

∑
(gen′,n′)∈RPAGl,gen,n

∑
gen′′∈U

mix(gen, gen′)(gen′′) · cpchoose(x, x′, gen, n, gen′, n′, gen′′) (2.23)

cpchoose(x, x′, gen, n, gen′, n′, gen′′) =
[x′ = x] if FCl,gen′′ = ∅

1

#FCl,gen′′

∑
m∈FCl,gen′′

[x′ = next(x, gen, n, gen′, n′,

gen′′,m)]otherwise,

(2.24)

where:

FCl,gen′′ =
{
o ∈ Pl | x(l, gen′′, o) = 0

}
(2.25)

next(x, a, b, a′, b′, a′′,m) = xnext :

xnext(i, j, k) =


x(i, j, k)− e0

2 if j ∈ {a, a′} and k ∈ {b, b′}
and i = l

e0 if j = a′′ and k = m and i = l
x(i, j, k) otherwise.

(2.26)

Remark 2.2.1 ([25, Remark 6.1]). Note that if

r∑
j=1

∑
k∈Pl

[x(l, j, k) > 0] < ql,

which means that the location l is not full, then our assumptions guarantee that for
every genotype gen

FCl,gen 6= ∅,

i.e. there is a copy number to take.

Explanation. The decision that the agent aggen,n performs the action repr, i.e. δgen,nrepr

(defined by Eq. (2.21)) is based on the condition that there is at least one neighbouring
agent in the same location and both agents have sufficient energy (higher than erepr)
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to produce an offspring. This condition is verified by checking the contents of the set
RPAGl,gen,n defined by Eq. (2.22). Therein x ∈ X denotes the arbitrary state of the
system when the decision is evaluated by the agent aggen,n.

In the case of positive evaluation of this decision (i.e., there exists aggen′,n′ with
sufficient energy) and enough space in the location (i.e., the number of agents does
not exceed ql), the state transition described by Eq. (2.23) is performed. This for-
mula stems from Bayes’ theorem which makes us check all possible agents from
RPAGl,gen,n. For each agent contained in this set a different state transition is per-
formed, as described by function next(·, ·, ·, ·, ·, ·, ·). The probability of choosing an
agent is equal to (#RPAGl,gen,n)−1.

The agent aggen,n that initiated the action with its neighbour aggen′,n′ becomes
a parent and selects the offspring agent genotype gen′′ using the probability distribu-
tion mix(gen, gen′) ∈ M(U). The offspring agent (aggen′′,n′′) is created if there is
enough room in the parental location (in this case there is always a free copy num-
ber, see Remark 2.2.1). If there is more than 1 inactive copy, the copy-number n′′ of
the offspring agent is selected with uniform probability distribution—see Eqs. (2.24),
(2.25)).

The state transition function is constructed in the way described in Eq. (2.26).
The incidence matrix xnext ∈ X is obtained from x by changing entries related
to agents aggen,n, aggen′,n′ , aggen′′,n′′ . Part of the parents’ energy is passed to the
offspring agent with the genotype gen′′, which is activated in the location l (and
whose energy is set to e0).

Observation 2.2.5 ([25, Observation 6.4]). The value of the probability transition
function imposed by Eqs. (2.10), (2.11), (2.21)–(2.26), performed by the agent
aggen,n present in the location l depends only on the elements of the system state
contained in its location. This function does not introduce any changes in other loc-
ations.

Explanation. Eqs. (2.21)–(2.26) involve only those entries of the incidence matrix
that are related to the location l, so both assumptions fully satisfy the conditions of
Definition 2.2.1.

A decision on the migration action migr may be undertaken by the agent with
enough energy to migrate if there exists a location that is able to accept it (its number
of agents does not exceed the maximum). When these conditions are met the agent is
moved from one location to another one.

Observation 2.2.6 ([25, Observation 6.5]). The probability transition function
%gen,nmigr : X →M(X) associated with the action migr is determined by:
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δgen,nmigr |Xgen,n (x)(1) =

{
1 if (x(l, gen, n) > emigr and #ACCLOCl > 0)
0 otherwise

(2.27)

ACCLOCl =

{
Loc \ {l} 3 l′ :

(
(l, l′) ∈ Top

)
and

 r∑
j=1

∑
k∈Pl′

[x(l′, j, k) > 0] < ql′

} (2.28)

ϑgen,nmigr |Xgen,n (x)(x′) =

1

#ACCLOCl

∑
loc′∈ACCLOCl

1

#FCloc′,gen∑
m∈FCloc′,gen

[x′ = next(x, gen, n, loc′,m)], (2.29)

where FCloc′,gen is given by Eq. (2.25) and

next(x, a, b, c,m) = xnext :

xnext(i, j, k) =


0 if i = l and j = a

and k = b
x(l, a, b) if i = c and j = a

and k = m
x(i, j, k) otherwise.

(2.30)

Explanation. The decision on the actionmigr, δgen,nmigr (defined by Eq. (2.27)) is based
on condition that the agent aggen,n has sufficient energy to migrate (greater than
emigr > erepr) and there is at least one neighbouring location (l′) capable of accept-
ing the agent that wants to migrate (the number of agents in this location does not
exceed ql′), which is stated by checking the contents of the ACCLOCl set defined
by Eq. (2.28). The arbitrary state of the system when the decision is evaluated by the
agent aggen,n is denoted by x ∈ X .

In the case of positive evaluation (of this decision), the state transition described
by Eq. (2.29) is performed. Again, the formula comes from Bayes’ theorem, which
checks all possible locations from ACCLOCl. For each location contained in this
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set, a different state transition is performed as described by the function next(·, ·, ·, ·).
The probability of choosing a location is equal to (#ACCLOCl)

−1. The agent ini-
tiating the action moves from its location (l) to location l′ that is uniformly chosen
from the set ACCLOCl. The change of location requires a change of the migrating
agent’s copy number. A new number is chosen from the set of available copy num-
bers for the target location (if the location is not full, this set is not empty, see Remark
2.2.1) according to the uniform distribution.

The state transition function is constructed as described in Eq. (2.30). The in-
cidence matrix xnext ∈ X is obtained from x by changing two entries related to a
position of the agent aggen,n in the location.

Observation 2.2.7 ([25, Observation 6.6]). The value of the probability transition
function imposed by Eqs. (2.10), (2.11), (2.27)–(2.30) and performed by the agent
agj,k present in the location l does not depend only on the elements of the system
state contained in its location. The action migr may introduce changes in the state
entries associated with the location l and another location.

Explanation. Eqs. (2.27)–(2.30) include references to the elements of the system con-
tained in the l-th and other locations.

The EMAS definition given here is enriched (with respect to the one in [29, 163])
by endowing it with a new cloning and mutation action clo, which allows a single
agent to produce offspring.

A decision on the cloning and mutation action clo is based on checking the
amount of agent’s energy only. An agent with sufficient energy may create offspring
agent based on its solution using the predefined family of probability distributions
mut : U →M(U), associated with genetic mutation (see, e.g. [187]). In particular,
mut(gen)(gen′) denotes the probability that gen′ is born of the parent gen. Part of
the parent’s energy (e1 = n1 ·∆e, n1 ∈ N) is passed onto the offspring agent.

By Observation 2.2.1 the following may be obtained:

Observation 2.2.8 ([25, Observation 6.7]). The probability transition function
%gen,nclo : X →M(X) associated with the action clo is determined by:

δgen,nclo |Xgen,n (x)(1) =


1 if x(l, gen, n) > erepr

and
∑r

j=1

∑
k∈Pl [x(l, j, k) > 0] < ql

0 otherwise
(2.31)

ϑgen,nclo |Xgen,n (x)(x′) =
∑

gen′∈U
mut(gen)(gen′) · cpchoose1(x, x′, gen, n, gen′)

(2.32)
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cpchoose1(x, x′, gen, n, gen′) =


[x′ = x] if FCl,gen′ = ∅

1

#FCl,gen′

∑
m∈FCl,gen′

[x′ =

next(x, gen, n, gen′,m)] otherwise,

(2.33)

where FCl,gen′ is given by Eq. (2.25) and

next(x, a, b, a′,m) = xnext :

xnext(i, j, k) =


x(i, j, k)− e1 if j = a and k = b

and i = l
e1 if j = a′ and k = m

and i = l
x(i, j, k) otherwise.

(2.34)

Explanation. The decision δgen,nclo on the action clo defined by Eq. (2.31) is based on
condition that the energy of the agent exceeds the predefined threshold eclo, where
x ∈ X denotes the arbitrary state of the system when the decision is evaluated by the
agent aggen,n.

In the case of positive evaluation of this decision and enough space in the location
(the number of agents does not exceed ql), the state transition described by Eq. (2.32)
is performed. As for the previous actions, this formula stems from Bayes’ theorem.
Based on the target agent (after applying a mutation operator), the state transition is
performed as described by the function next(·, ·, ·, ·, ·).

The state transition function is constructed in the way described in Eq. (2.34).
The incidence matrix xnext ∈ X is obtained from x by changing entries related to
agents aggen,n and aggen′,n′ . Part of the parent’s energy is passed onto the offspring
agent with genotype gen′ which is activated in location l and whose energy is set to
e0.

Observation 2.2.9 ([25, Observation 6.8]). The value of the probability transition
function imposed by Eqs. (2.10), (2.11), (2.31)–(2.34) and performed by the agent
aggen,n present in the location l, depends only on the elements of the system state
contained in its location. The action clo will not introduce any changes in the other
location.

Explanation. In eqs. (2.31)–(2.34) entries of the incidence matrix not related to the
current l-th location remain intact. Also the right-hand sides of these equations do
not involve these entries.
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Action resulting from the local search activation Using a mechanism similar
to the one included in the definition of action clo, it is possible to represent local
searches invoked from particular points encoded by genotypes inU . The action which
implements the local search will be called lse. The agent executing lse produces a
new agent with a new genotype gen′ which results from the application of the local
search procedure loc starting from the parental genotype gen. The local search may
be invoked by an agent with sufficient energy (greater than erepr), thus the decision
function δgen,nlse |Xgen,n will have the same form as determined by Eq. (2.31).

The result of running the local method is characterized by the function loc :
U →M(U). In the case of stochastic local search (e.g. a strictly ascending random
walk), the probability distribution loc(gen) characterizes the result of running such
method starting from the parental genotype gen. Of course, loc(gen) need not (and in
general will not) be strictly positive as it might be assumed in the case of the genetic
mutation distribution mut(gen). In the case of deterministic local method, loc(gen)
takes strictly one positive value for the genotype gen′ obtained from applying this
local method to gen. Of course, the loc function depends on both the local search
algorithm and the fitness function corresponding to the optimisation problem at hand.

Part e1 = n1 · ∆e, n1 ∈ N of the parent’s energy is passed to the offspring in
much the same way as it is carried out during execution of the action clo. The above
assumptions together with the Observation 2.2.1 lead to the following:

Observation 2.2.10 ([25, Observation 6.9]). The probability transition function
%gen,nlse : X → M(X) associated with the action lse is determined by the decision
function δgen,nlse |Xgen,n described by the Eq. (2.31) and the actions’ kernel by the Eqs.
(2.32)–(2.34) in which the function mut : U → M(U) is replaced by the function
loc : U →M(U).

The above observation might be verified in the same way as Observation 2.2.8
formulated and proved for the clo action. Similarly, without additional verification
we may accept the following:

Observation 2.2.11 ([25, Observation 6.10]). The value of the probability transition
function %gen,nlse : X → M(X) imposed by the action lse executed by the agent
aggen,n present in the location l depends only on the elements of the system state
contained in its location. The action lse will not introduce changes in other locations.

Action’s taxonomy Observations 2.2.3, 2.2.5, 2.2.7, 2.2.9 and 2.2.11 may be sum-
marised in the following corollary:
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Corollary 2.2.1 ([25, Corollary 6.1]). The actionmigr is global, whereas the actions
get, repr, clo and lse are local, i.e.

Actloc = {get, repr, clo, lse},
Actgl = {migr}.

Observation 2.2.12 ([25, Observation 6.11]). The probability transitions imposed by
actions get, repr, migr, clo and lse satisfy the Markov condition (see, e.g. [12]).

Explanation. The probability transitions of the actions %gen,nget , %gen,nrepr , %gen,nmigr , %gen,nclo ,
%gen,nlse given by Eqs. (2.10), (2.11), (2.16)–(2.30) depend only on the current state
x ∈ X of the system.

2.2.4. EMAS management

In order to obtain relaxed synchronisation (i.e., agents present in locations may
act in parallel), a dedicated timing mechanism must be introduced, which means that
all state changes must be assigned to subsequent time moments t0, t1, . . . Now, the
algorithmic description for CA will be considered, LAi, i ∈ Loc and MA presen-
ted in Pseudocodes 2.2.1, 2.2.2 and 2.2.3, respectively [25] constituting Hoare’s
rendezvous-like synchronisation mechanism [86]. Note that here and later a(B) de-
notes the effect of randomly sampling one of the elements from the set B with the
random distribution a; it is also assumed that the sets localact, globalact ⊂ Act
contain the local and global actions’ signatures respectively.

In Figure 2.5 the scheme of the synchronisation mechanism is shown.
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Figure 2.5. EMAS management structure
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CA = aggen,n, present in the location i at every observable time moment
chooses an action it wants to perform. It uses the probability distribution ω to choose
from Act and asks its supervisor (LAi) for permission, and using function send(),
it sends a message with a chosen action. Then, it suspends its work and waits for
permission (or denial) from LAi using blocking function b_receive().

Both these functions are variadic. The first parameter in each function is always a
target identifier, and the other parameters may be one or more values to be passed. In
this particular case, the target either receives a certain value or just receives a signal
from the sender (in this case no value is required).

Once permission is granted and the decision assigned to the action is true, the
CA changes the state of the location (see Pseudocode 2.2.1). Then the agent suspends
its work again in order to get permission to perform subsequent actions.

Pseudocode 2.2.1: COMPUTING AGENT’S ALGORITHM

while true

reply ← 0
α← ω(x, gen)(Act)

send(LAi, α)
b_receive(LAi, reply)
if reply and δα(x, gen, n)({0, 1})

then xnext ← ϑgen,nα (x)(X)

send(LAi)
b_receive(LAi)

The LAi (see Pseudocode 2.2.2) starts its work by checking whether the location
contains any agents, so it sends a message to MA and waits for a reply. If there are
any agents in the location, the LAi receives signals containing identifiers of actions to
be performed from all its agents and puts them into a hash map indexed by genotypes
and containing actions identifiers. Then the LAi utilises the function agseli to choose
CA which should try to perform its action. This action is reported to MA and as
soon as it has received permission, the computing agent can perform the action. All
other agents (and the chosen one when permission is not granted) are stopped from
performing their actions. Afterwards the LA waits for all CA to report the readiness
to perform subsequent actions, and then reports this fact to the MA, and as soon as
it has received permission, CA can perform their actions.

MA (see Pseudocode 2.2.3) waits for all requests from each location and then
chooses randomly one location. If this location asks for permission to perform a
global action, then this permission is granted and all other locations are rejected.
Otherwise all locations asking for permission to perform a global action are rejected
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and all those asking for permission to perform local actions—are granted. Finally,
MA waits once more for all locations to report that their work has been finished and
let them try to perform a subsequent action.

Pseudocode 2.2.2: LOCAL AGENT’S ALGORITHM

while true

localgen← {(j, k) ∈ U × Pi; x(i, j, k) > 0}
genact← hashmap(U × Pi, Act)
act← 0
reply ← 0
if #localgen = 0

then


send(MA,null)
b_receive(MA)
send(MA,null)
b_receive(MA)

else


for each g ∈ localgen

do
{
b_receive(g, act)
genact[g]← act

gchosen← agseli(x)(Act)

REPORT (genact[gchosen], gchosen)

function REPORT(act, chosen)
send(MA, act)
b_receive(MA, reply)
if reply

then send(chosen, 1)
else send(chosen, 0)

for each g ∈ (localgen \ chosen) do send(g, 0)
for each g ∈ localgen do b_receive(g)
send(MA)
b_receive(MA)
for each g ∈ localgen do send(g)
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Pseudocode 2.2.3: MASTER AGENT’S ALGORITHM

while true

local← {i : i ∈ [1, s]}
localloc← ∅
localglob← ∅
act← 0
rep← 0
for each j ∈ local

do


b_receive(j, act)
if act ∈ Actgl

then localglob← localglob ∪ {j}
else localloc← localloc ∪ {j}

lchosen← locsel(x)(Loc)

if lchosen ∈ localglob

then


send(lchosen, 1)
for each j ∈ (local \ {lchosen})

do send(j, 0)

else
{

for each j ∈ localloc do send(j, 1)
for each j ∈ localglob do send(j, 0)

for each j ∈ local do b_receive(j)
for each j ∈ local do send(j)
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2.3. Immunological evolutionary multi-agent system

Solving difficult search problems with population-based approaches, especially
those with costly evaluation of their candidate solutions (e.g. inverse problems [5]),
requires looking for techniques that may make it possible to increase the search ef-
ficiency. One method can be reducing the number of fitness function calls. It may
be done in several ways, e.g. by applying tabu search [3] or, strictly in a technical
layer, by caching fitness values generated for identical (or similar) genotypes. In this
section, an immunological selection mechanism designed for EMAS is discussed.

The formal model presented in this section is recalled after Byrski, Schaefer and
Smołka [26].

2.3.1. iEMAS concept

The main idea of applying immunological inspirations to speed up the process
of selection in EMAS is based on the assumption that “bad” phenotypes come from
“bad” genotypes. Thus, a new group of agents (acting as lymphocyte T-cells) may be
introduced (see works of Byrski and Kisiel-Dorohinicki [21, 20] and Ph.D. thesis of
Byrski [18]). They are responsible for recognising and removing agents with geno-
types similar to the genotype pattern possessed by these lymphocytes. Another ap-
proach may introduce specific penalty applied by T-cells for recognised agents (cer-
tain amount of the agent’s energy disappears) instead of removing them from the
system. The general structure of iEMAS (immunological EMAS) is presented in Fig-
ure 2.6.

Of course, there must exist some predefined affinity (lymphocyte-agent match-
ing) function which may be based, e.g. on the percentage difference between corres-
ponding genes. Lymphocytes are created in the system after the action of death. The
late agent genotype is transformed into lymphocyte patterns by means of mutation
operator, and the new lymphocyte (or a group of lymphocytes) is introduced into the
system.

In both cases, new lymphocytes must undergo a process of negative selection.
Within a specified period of time, the affinity of immature lymphocytes’ patterns to-
wards “good” agents (possessing relatively high amount of energy) is tested. If it is
high (lymphocytes recognise “good” agents as nonself), they are removed from the
system. If the affinity is low, it is assumed that they will be able to recognise non-
self individuals (“bad” agents) leaving agents with high energy intact. The lifespan
of lymphocytes is controlled by specific, renewable resource (strength), used as a
counter by the lymphocyte agent. (see Fig. 2.6).

iEMAS is an example of a cultural algorithm, which is an extension of EMAS.
However, based on the agent energy-related information the population of lympho-
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cytes is modified (they are considered mature or not). Therefore, the agent energy-
related knowledge serves as situational knowledge (see Section 1.3.2). Lymphocyte
energy serves as temporal knowledge, so the lymphocyte may be removed after a
certain period of time. Generally speaking, the information contained in lympho-
cytes may be seen as distributed “tabu” list, and therefore considered to be temporal
knowledge.
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Figure 2.6. Immunological evolutionary multi-agent system (iEMAS)

The early removing of “bad” solutions and a decrease in the number of the in-
dividuals in the computing populations (see the computing results later in this sec-
tion) makes iEMAS a weapon of choice to deal with problems, where a complex
fitness function is used. Indeed, an interesting optimisation task was approached with
iEMAS, namely the evolution of neural network architecture [20, 23] and benchmark
function optimisation [21].

Immunological selection mechanism may seem as a dangerous, potentially
harmful extension of the already effective system, as its main principle of work is
removing certain, not fully evaluated individuals, even more, by excluding certain
areas from the solution space. However, as mentioned before, this mechanism should
be seen as a distributed tabu list that temporarily excludes non-promising areas by
“guarding” them over a certain time period with the use of lymphocytes. As soon
as the time of lymphocytes activity has passed, these areas are available again for
computing agents.
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2.3.2. Formal definition of iEMAS

In this section, a description of EMAS state is cited and extended by adding a
matrix describing iEMAS state (following [26]).

EMAS state In order to define the iEMAS state, the EMAS state, which is a crucial
part of iEMAS, must be outlined first. Here, similarly to Section 2.2.2, a set of three-
dimensional, incidence and energy matrices is introduced, as λ ∈ Λ with s layers
(corresponding to all locations) λ(i) = {λ(i, gen, n), gen ∈ U, n ∈ Pi}, i ∈ Loc.
The layer λ(i) will contain energies of agents in the i-th location. In other words, if
λ(i, gen, k) > 0, it means that the k-th clone of the agent with the gene gen ∈ U is
active, its energy equals λ(i, gen, k) and it is present in the i-th location.

Now, the following coherency conditions are given:

• (·, j, k)-th column contains at most one value greater than zero, which means that
the agent with k-th copy of j-th genotype may be present in only one location at
a time, whereas other agents containing copies of j-th genotype may be present
in other locations;

• entries incidence and energy matrices are non-negative λ(i, j, k) ≥ 0, ∀ i =
1, . . . , s, j = 1, . . . , r, k = 1, . . . , p and

∑s
i=1

∑r
j=1

∑p
k=1 λ(i, j, k) = 1,

which means that the total energy contained of the whole system is constant,
equal to 1;

• each layer λ(i) has at most qi values greater than zero, which denotes the max-
imal capacity of the i-th location and moreover, the quantum of energy ∆e is less
than or equal to the total energy divided by the maximal number of individuals
that may be present in the system ∆e ≤ 1∑s

i=1 qi
, which allows us to achieve

maximal population of agents in the system;

• reasonable values of p should be greater than or equal to 1 and less than or equal
to
∑s

i=1 qi; it is assumed that p =
∑s

i=1 qi, which assures that each configuration
of agents in locations is available, in respect of the total number of active agents∑s

i=1 qi; increasing p over this value does not enhance the descriptive power of
the model;

• the maximal number of copies for each location #Pi should not be less than
qi, because a system state in which a particular location is filled with clones of
one agent should be allowed; increasing #Pi over qi is only a formal constraint
relaxation, so finally it is assumed that #Pi = qi.

Putting all these conditions together, a set of three-dimensional incidence and
energy matrices may be described in the following way, giving the EMAS part of the
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system state.

Λ =
{
ince ∈ {0,∆e, 2 ·∆e, 3 ·∆e, . . . ,m ·∆e}s·r·p,∆e ·m = 1,

s∑
i=1

r∑
j=1

p∑
k=1

x(i, j, k) = 1,∀ i = 1, . . . , s :
r∑
j=1

p∑
k=1

[x(i, j, k) > 0] ≤ qi, (2.35)

∀ i = 1, . . . , s, j = 1, . . . , r, k /∈ Pi : x(i, j, k) = 0,

∀j = 1, . . . , r, k = 1, . . . , p :
s∑
i=1

[x(i, j, k) > 0] ≤ 1
}

where [·] denotes the value of the logical expression in parentheses.

iEMAS state To continue considerations presented in, e.g. [29, 163, 26] iEMAS
has a dynamic collection of lymphocytes that belong to the finite set Tc. Lympho-
cytes are unambiguously indexed by the genotypes from U , so that #Tc = #U = r.
Lymphocytes have a similar structure to the computing agents defined in the previous
paragraph, however, their actions are different (because their goals are different from
the computing agents’ goals) and their total energy does not have to be constant.

In addition to the above-given EMAS state describing the location and energy
of agents, a set of matrices containing similar information for lymphocytes must be
considered. Yet there is no need to ensure the constant total energy for lymphocytes.
This additional set of lymphocyte incidence and energy matrices is described in the
following way:

Γ =

{
tcince ∈ [0,∆e, . . . , n ·∆e]r·s : ∀ i = 1, . . . , s

r∑
j=1

[tcince(i, j) > 0] ≤ tcqj

and ∀ j = 1, . . . , r
s∑
i=1

[tcince(i, j) > 0] ≤ 1

}
, (2.36)

where tcince(i, j) stands for energy of tcj which is active in the location i. The in-
tegers tcqj , j = 1, . . . , s stand for the maximal number of lymphocytes in particular
locations. It is most convenient to assume tcqj = qj , ∀j = 1, . . . , s.

The space of iEMAS states is defined as follows:

X = Λ× Γ. (2.37)
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Structure and behaviour of iEMAS iEMAS may be modelled as the following
tuple:

〈U, {Pi}i∈Loc, Loc, Top,Ag, {agseli}i∈Loc, locsel, {LAi}i∈Loc,MA, ω,Act,

{typeseli}i∈Loc, {tcseli}i∈Loc, T c, T cact〉, (2.38)

where:
• MA (Master Agent) is used to synchronise the work of locations; it allows per-

forming actions in particular locations. This agent is also used to introduce ne-
cessary synchronisation into the system;

• locsel : X → M(Loc) is a function used by MA to determine which location
should be permitted to perform the next action,

• LAi (Local Agent) is assigned to each location; it is used to synchronize the
work of computing agents present in the location; LAi chooses a Computing
Agent (CA) or a T-Cell (TC) and lets it evaluate a decision and perform the
action, at the same time asking permission from MA to perform this action;

• agseli : X → M(U × Pi) is a family of functions used by LAi to select the
agent that may perform the action, such that each location i ∈ Loc has its own
function agseli.

• ω : X × U → M(Act) is a function used by agents to select actions from the
set Act.

• Act is a predefined, finite set of actions.

• typeseli is a function used to select the type of agent in i-th location to interact
with the system in the current step,

• tcseli is used to choose a lymphocyte in the i-th location to interact with the
system in the current step,

• ϕ is the decision function for lymphocytes, which chooses an action for them to
perform,

• Tcact is a set of actions that may be performed by lymphocytes.
Similarly to the case of EMAS (see Section 2.2.2) the population of agents is

initialized by means of the introductory sampling. This may be regarded as a one-
time sampling from X according to a predefined probability distribution (possibly
the uniform one) from M(X). Each agent starts its work immediately after being
activated. At every observable moment only one agent present in each location gains
the possibility of changing the state of the system by executing its action.

The function typeseli is used by LAi to decide, whether CA or a TC should
be chosen. Then, one of the functions agseli or tcseli is used to determine which
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agent (or lymphocyte) present in the i-th location will be the next one to interact with
the system. After being chosen, the agent aggen,n chooses one of the possible actions
according to the probability distribution ω(x, gen). In the case of lymphocyte tcgen,
the probability distribution ϕ(x, gen) is used.

It must be noted that the selection of action by all agents, which carry the same
genotype gen in the same state x, is performed according to the same probability
distribution ω(x, gen) and does not depend on the the genotype copy number n.
In the simplest case, ω returns the uniform probability distribution over Act for all
(x, gen) ∈ X × U . Similarly to the case of a lymphocyte, ϕ returns the uniform
probability distribution over Tcact for all (x, gen) ∈ X × U .

Next, the computing agent or lymphocyte applies to LAi for the permission to
perform this action. When the necessary permission is granted, the agent aggen,n (or
the lymphocyte tcgen) performs the action after checking that a condition defined
by formulas (2.39) and (2.48) has been fulfilled. If during the action an agent’s or
lymphocyte’s energy is brought to 0, this agent suspends its work in the system (it
becomes inactive).

MA manages the activities of LAi and allows them to grant their agents per-
missions to carry out requested tasks. The detailed managing algorithm based on the
rendezvous mechanism [86] is described in Section 2.3.3.

Denote byXgen a subset of states in which there are active agents with the geno-
type gen ∈ U or an active lymphocyte. Again, as the first step in defining the iEMAS
dynamics, the EMAS part of the system must be addressed.

Each action α ∈ Act will be represented as the a of function families
({δgenα }gen∈U , {ϑgenα }gen∈U ). The functions

δgenα : X → M({0, 1}) (2.39)

represent the decision to be taken: whether the action can be performed or not. The
action α is performed with the probability δgenα (x)(1) by the agent aggen,n at the state
x ∈ X and rejected with the probability δgenα (x)(0).

Next, the formula
ϑgenα : X →M(X) (2.40)

defines the non-deterministic state transition functions, so that ϑgenα is caused by the
execution of the action α by the agent aggen,n. The function is only invoked if the
agent in active, therefore it is enough to define its restriction ϑgenα |Xgen and take an
arbitrary value on X \Xgen.

If any action is rejected, the trivial state transition

ϑnull : X →M(X) (2.41)
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such that for all x ∈ X

ϑnull(x)(x′) =

{
1 if x = x′

0 otherwise
(2.42)

is performed.
The probability transition function for the action α performed by the agent car-

rying the genotype gen
%genα : X →M(X) (2.43)

is given by the formula

%genα (x)(x′) = δgenα (x)(0) · ϑnull(x)(x′) (2.44)

+δgenα (x)(1) · ϑgenα (x)(x′),

where x ∈ X denotes a current state and x′ ∈ X a consecutive state resulted from
the conditional execution of α.

The function typeseli is introduced, to choose which type of agents will be able
to perform the action:

typeseli : X →M({0, 1}). (2.45)

When 0 is chosen, one of the agents is activated, when 1—the lymphocyte is activ-
ated.

The function agseli that chooses an agent to be activated is similar as in the case
of EMAS but it now depends in some way on the extended state from X defined by
(2.37). Now a new function that will choose a lymphocyte to be activated is intro-
duced:

tcseli : X →M(Tc). (2.46)

The function ω which chooses the action for the active agent remains intact,
though its domain changes (because of the new state definition, see (2.37)).

The function which chooses the action for the active lymphocyte is the following:

ϕ : U ×X →M(Tcact) (2.47)

Each action α ∈ Tcact will be represented as a pair of function families
({γgenα }gen∈U , {κgenα }gen∈U ). The functions

γgenα : X → M({0, 1}) (2.48)

represent the decision to be taken: whether the action can be performed or not. The
action α is performed with the probability γαgen(x)(1) by the lymphocyte tcgen at
the state x ∈ X , and rejected with the probability γgenα (x)(0).
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The following family of functions ηgenα : X → M(X) will be used, where
gen ∈ U , α ∈ Tcact. Each of them expresses the probability transition imposed
by the lymphocyte tcgen that performs the action α ∈ Tcact. They are given by the
general formula:

ηgenα (x)(x′) = γα(gen, x)({0}) · ϑnull(x)(x′) + γα(gen, x)({1}) · κgen,nα (x)(x′)
(2.49)

The agents’ and lymphocytes’ actions may be divided into two distinct types:
global—they change the state of the system in two or more locations, so only one
global action may be performed at a time, and local—they change the state of the
system inside one location respecting only the state of local agents; only one local
action for one location may be performed at a time.

Therefore the Act set is divided in the following way: Act = Actgl ∪ Actloc
and Tcact : Tcact = Tcactgl ∪ Tcactloc accordingly. Speaking informally, local
actions (elements of Actloc, T cactloc) change only the entries of the layer x(i) of the
incidence and energy matrices if the location i ∈ Loc contains the agent performing a
certain action. Moreover, these actions do not depend on other layers of x. The action
null is obviously “the most local one”, because it does not change anything at all.

In the case of EMAS and iEMAS, actions such as evaluation or lymphocyte pat-
tern matching may be perceived as local, whereas the action of migration is perceived
as global. The above-stated conditions may be defined formally and may be used to
prove commutativity of iEMAS (cf. [29, 163]), as in the case of EMAS in [25].

2.3.3. iEMAS management

Similarly to the case of EMAS described in Section 2.2.4, in order to design a
Markov model of the system with relaxed synchronisation (i.e. so that agents present
in different locations may act concurrently), a timing mechanism must be introduced,
i.e. all state changes must be assigned to subsequent time moments t0, t1, . . . [26].

In Figure 2.7, a scheme of the synchronisation mechanism is presented consti-
tuting Hoare’s rendezvous-like synchronisation mechanism [86], similarly to EMAS.

The CA (see Pseudocode 2.3.1) and TC (see Pseudocode 2.3.2) present in the
location i at every observable time moment choose an action they want to perform
and ask their supervisor (LAi) for permission to carry on, sending a message with a
chosen action identifier using function send() (similarly to the case of EMAS, see
Section 2.2.4). Then they suspend their work and wait for permission (or denial) from
LAi using blocking function b_receive(). Both these functions are variadic. The first
parameter in each function is always a target identifier, and the other parameters may
be one or more values to be passed. In this particular case, the target either receives
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a certain value or just receives a signal from the sender (in this case no value is
required).

Once the permission is granted and the decision assigned to the action is positive,
the computational agent changes the state of the location. Then, the agent suspends
its work again in order to get permission to perform a subsequent action.

MA
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Figure 2.7. iEMAS management structure

LAi (see Pseudocode 2.3.4) receives signals containing actions to be performed
from all its agents. Then chooses one CA which should try to perform its action.
This action is reported to MA and after receiving permission, the CA can perform
the action. All other agents are stopped from performing their actions.

MA (see Pseudocode 2.3.3) waits for all requests from location and then chooses
randomly one location. If this location asks for permission to perform a global action,
then permission is granted this and all other locations are rejected. Otherwise all
locations which asked for the permission to perform global action are rejected and all
those asking for permission to perform local action are granted.

Pseudocode 2.3.1: COMPUTATIONAL AGENT’S ALGORITHM

while true
reply ← 0;α← ω(x, gen)(Act)

send(LAi, α); b_receive(LAi, rep)
if rep and δgenα (x)({0, 1})

then xnext ← ϑgenα (x)(X)

send(LAi); b_receive(LAi)
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Pseudocode 2.3.2: LYMPHOCYTE’S ALGORITHM

while true

reply ← 0
α← ϕ(x, tcgen)(Tcact)

send(LAi, α)
b_receive(LAi, rep)
if rep and δgenα (x)({0, 1})

then xnext ← ηgenα (x)(X)

send(LAi)
b_receive(LAi)

Pseudocode 2.3.3: MASTER AGENT’S ALGORITHM

while true

local← {i : i ∈ [1, s]}
localloc← ∅
localglob← ∅
act← 0
rep← 0
for each j ∈ local

do


b_receive(j, act)
if act ∈ {Actgl ∪ Tcactgl}

then localglob← localglob ∪ {j}
else localloc← localloc ∪ {j}

lchosen← locsel(x)(Loc)

if lchosen ∈ localglob

then
{
send(lchosen, 1)
for each j ∈ (local \ {lchosen}) do send(j, 0)

else
{

for each j ∈ localloc do send(j, 1)
for each j ∈ localglob do send(j, 0)

for each j ∈ local do b_receive(j)
for each j ∈ local do send(j)
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Pseudocode 2.3.4: LAi ALGORITHM

while true

localgen← {(j, k) ∈ U × Pi; x(i, j, k) > 0}
localtc← {U 3 j : tcince(i, j) > 0}genact← hashmap(U × Pi, Act)
tcact← hashmap(U × Pi, T cact)
act← 0
reply ← 0
if #{localgen ∪ localtc} = 0

then


send(MA,null)
b_receive(MA)
send(MA,null)
b_receive(MA)

else



for each g ∈ localgen

do
{
b_receive(g, act)
genact[g]← act

for each g ∈ localtc

do
{
b_receive(g, act)
tcact[g]← act

if typesel(x)
then gchosen← agseli(x)(Act)

REPORT (genact[gchosen], gchosen)
else gchosen← tcseli(x)(Tcact)

REPORT (tcact[gchosen], gchosen)

function REPORT(act, chosen)
send(MA, act)
b_receive(MA, reply)
if reply

then send(chosen, 1)
else send(chosen, 0)

for each g ∈ (localgen \ chosen) do send(g, 0)
for each g ∈ localgen do b_receive(g)
send(MA)
b_receive(MA)
for each g ∈ localgen do send(g)
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2.4. Towards verification of EMAS

As stated in Sections 2.2.1 and 2.3, agent-based metaheuristics, such as EMAS
and iEMAS have already proved to be good techniques for solving difficult search
problems (see, e.g. [22, 169, 54, 20, 23, 21] to point out a few). However, in or-
der to make sure that such a complex tool may be useful, both formal analysis and
experimental verification should be conducted.

The model presented here was not only constructed for the sole purpose of
EMAS, but also to constitute a framework that may be further used to describe
other computing systems (therefore, EMAS model was extended in order to support
iEMAS). Research may be continued, and other similar computing systems may be
defined using this style of modelling.

Using these models for the sole purpose of definition of computing systems will
not make it possible utilise its descriptive power to the full extent. In the next chapter,
a detailed analysis of EMAS stochastic features based on the model presented in this
chapter is given. The Markov-chain modelling EMAS has turned out to be ergodic,
which gives for this class of systems asymptotic guarantee of success (cf. [150, 162]).
For iEMAS, appropriate ergodic conjecture is given and the proof is outlined.

The formal model of EMAS together with the ergodicity proof may be seen as
unique phenomenon in the field of computing, as there is a lack of a comprehens-
ive stochastic model of the wide class of population-based, general evolutionary or
memetic algorithms.

At the same time, a detailed experimental analysis of EMAS is required to give
a perceptible proof of correctness of the advocated computing approach. A series
of experiments were conducted and the outcome is discussed in detail in Chapter 4,
which shows that these systems are capable of solving difficult problems. It has also
been proved that agent-based computing is better than classical approaches when
applied to selected problems.



3. Formal aspects of agent-based metaheuristics

In this chapter a formal model for EMAS and iEMAS dynamics based on
Markov chains is presented. This way of modelling is inspired by the works of Vose
[187].

Byrski, Schaefer and Smołka [29, 163] proposed a construction of a Markov-
chain formal model for EMAS and iEMAS utilising the continuous space of states.
In these works, a globally synchronised and parallel version of the system were de-
scribed.

After detailed analysis of EMAS dynamics, consisting in formulation of a
Markovian transition function for the discrete model of EMAS is given. Next, the
necessary conditions for feasible space of states are formulated, along with the er-
godicity theorem for EMAS and its formal proof (recalled after Byrski, Schaefer,
Smołka, Cotta [25]). The technical details of this proof may be found in Appendix B.

Later, the Markovian transition function for the discrete model of iEMAS is
given, along with ergodic conjecture and the outline of its proof (recalled after Byrski,
Schaefer, Smołka [26]).

Various types of convergence of the solutions of the global optimisation problem
can be verified using the approach presented here, especially the probabilistic guar-
antee of success (see, e.g. [150, 162]) is an outcome of the ergodicity of the model.
This proof marks so-called asymptotic guarantee of success [150, 162] that may also
be associated with probabilistic completeness defined by Hoos and Stützle [91].

3.1. Formal analysis of EMAS

Following the concept of EMAS and its structural model provided in Section
2.2.1, discussion on asymptotic features of this system is given here. Starting with
a detailed description of the system transition function, the ergodicity theorem is
formulated and proved [25].
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3.1.1. EMAS dynamics

At every observable moment at which EMAS has the state x ∈ X , all CA in
all locations notify their LAi of their intent to perform an action. All LAi choose
an agent using the distribution given by the function agseli(x) and then notify the
Master Agent of their intent to let one of their agents perform an action.MA chooses
the location with the probability distribution locsel(x).

The probability that in the chosen location i ∈ Loc the agent wants to perform a
local action is as follows:

ξi(x) =
∑
gen∈U

∑
n∈Pi

agseli(x)(gen, n) · ω(x, gen)(Actloc) (3.1)

The probability that MA will choose the location with the agent which intends to
perform a local action is:

ζ loc(x) =
∑
i∈Loc

locsel(x)(i) · ξi(x) (3.2)

Of course, the probability that MA will choose the global action is:

ζgl(x) = 1− ζ loc(x) (3.3)

If the global action has been chosen then the probability of passing from the state
x ∈ X to x′ ∈ X can be computed using Bayes rule as the sum over all possible
sampling results:

τ gl(x)(x′) =
∑
i∈Loc

locsel(x)(i) ∑
gen∈U

∑
n∈Pi

agseli(x)(gen, n)·

 ∑
α∈Actgl

ω(x, gen)(α) · %gen,nα (x)(x′)

 (3.4)

Now, a set of action sequences containing at least one local action is defined:

Act+1loc =

{
(α1, . . . , αs) ∈ Acts;

s∑
i=1

[αi ∈ Actloc] > 0

}
(3.5)

The following family of coefficients is defined {µαi,geni,ni(x)}, i ∈ Loc, geni ∈
U, ni ∈ Pi, x ∈ X . If the location i is non-empty in the state x, then µαi,geni,ni(x)
is equal to the probability that the agent aggeni,ni residing in the i-th location will
choose action αi:

µαi,geni,ni(x) = agseli(x)(geni, ni) · ω(x, geni)(αi). (3.6)
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Of course, µαi,geni,ni(x) = 0 if the agent aggeni,ni does not exist in the location i in
the state x, because agseli(x)(geni, ni) = 0 in this case. Moreover, µαi,geni,ni(x) =
1, if the location i is empty in the state x. Next, the multi-index is introduced:

ind =
(
α1, . . . , αs; (gen1, n1), . . . , (gens, ns)

)
∈ IND = Acts+1loc ×

s∏
i=1

(U × Pi).

(3.7)

The probability that in the state x, agents aggeni,ni will choose the actions αi in
consecutive locations is given by:

µind(x) =
s∏
i=1

µαi,geni,ni(x) (3.8)

Similarly to the previous case the probability of passing from the state x ∈ X to
x′ ∈ X for the parallel system can be computed using Bayes’ rule as the sum over
all possible sampling results:

τ loc(x)(x′) =
∑

ind∈IND
µind(x)(πind1 ◦ , . . . , ◦πinds )(x)(x′), (3.9)

where

πindi (x) =

{
%geni,niαi (x), αi ∈ Actloc and i is non-empty
ϑnull, αi ∈ Actgl or i is empty.

(3.10)

The definition of the coefficient µαi,geni,ni(x) and the above formula (3.10) show
in particular that the action null is executed in every location instead of a selected
global action, and formally in all empty locations.

It is easy to see that the value of (πind1 ◦ , . . . , ◦πinds )(x)(x′) does not depend
on the composition order because transition functions associated with local actions
commutate pairwise (see Corollary 2.2.1). It validates the following observation.

Observation 3.1.1 ([25, Observation 5.1]). The probability transition function for
the EMAS model is given by the formula

τ(x)(x′) = ζgl(x) · τ gl(x)(x′) + ζ loc(x) · τ loc(x)(x′) (3.11)

and Eqs. (3.1)–(3.10).

Observation 3.1.2 ([25, Observation 5.2]). The stochastic state transition of EMAS
given by Eq. (3.11) satisfies the Markov condition. Moreover, the Markov chain
defined by these functions is stationary.
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Proof. All transition functions and probability distributions given by Eqs. (3.1)–
(3.10) depend only on the current state of the system, which motivates the Markovian
features of the transition function τ given by (3.11). The transition functions do not
depend on the step number at which they are applied, which motivates the stationarity
of the chain.

3.1.2. Ergodicity of EMAS

It is intended to analyse some asymptotic features of the model in order to draw
significant conclusions on capabilities of finding the optimum of a given function by
EMAS with actions definitions given in 2.2.3.

The actions defined in Section 2.2.3, forming the following sets:

Actloc = {get, repr, clo, lse},
Actgl = {migr}.

are used in this proof.

Theorem 3.1.1 ([25, Theorem 7.1]). Assume the following conditions hold.
1. The migration energy threshold is lower than the total energy divided by the

number of locations emigr < 1
s . This assumption ensures that there will be at

least one location in the system in which an agent is capable of performing mi-
gration (by gathering enough energy from its neighbours).

2. The quantum of energy is lower than or equal to the total energy divided by the
maximal number of agents that may be present in the system ∆e 6 1∑s

i=1 qi
. This

assumption allows to achieve a maximal population of agents in the system.

3. The reproduction (cloning) energy is lower than two energy quanta erepr 6 2∆e.

4. The amount of energy passed from parent to child during the action clo is equal
to ∆e (so n1 = 1).

5. The maximal number of agents on every location is greater than 1, qi > 1, i =
1, . . . , s.

6. Locations are connected to each other, i.e. Top = Loc2.

7. Each active agent can be selected by its LAi with strictly positive probability,
i.e.
∃ ιagsel > 0; ∀ i ∈ Loc,∀ gen ∈ U,
∀n ∈ Pi, ∀ x ∈ {y ∈ X; y(i, gen, n) > 0}, agseli(x)(gen, n) > ιagsel.
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8. Families of probability distributions which are parameters of EMAS have uni-
form, strictly positive lower bounds
∃ ιω > 0; ∀ x ∈ X, gen ∈ U,α ∈ Act, ω(gen, x)(α) > ιω,

∃ ιcmp > 0; ∀ gen, gen′ ∈ U, cmp(gen, gen′) > ιcmp,

∃ ιmut > 0;∀gen, gen′ ∈ U,mut(gen)(gen′) > ιmut,

∃ 0 < ιlocsel < 1;∀ x ∈ X,∀ j ∈ Loc, locsel(x)(j) > ιlocsel.
Then the Markov chain modeling EMAS (see Eq. (3.11)) is irreducible, i.e. the system
state may be transformed between any two arbitrarily chosen states xb, xe ∈ X .

Remark 3.1.1 ([25, Remark 7.1]). Note that assumption 7 of Theorem 3.1.1 is reas-
onable because the number of possible states of the system is finite and so is the
number of locations.

Remark 3.1.2 ([25, Remark 7.2]). The definition of the state space X (see Eq.
(2.3.2)) implies that there already exists at least one computing agent in EMAS and
that at least one location is non-empty at any time.

Because of the complexity, the technical details of the proof are transferred to
Appendix B.

Proof of Theorem 3.1.1. It will suffice to show that the transformation between two
arbitrary EMAS states (xb, xe ∈ X) may be performed in a finite number of steps
with the positive probability. The following sequence of stages (see Fig. 3.1) defines
such transformation.

x b

xe

x
01

x
12

x
23

x
34

x
45

Stage 0:
removing one
agent in full
locations

Stage 1:
removing all 
agents from all
locations by a
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agent present
in x    in all
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e

Stage 4:
creating in parallel
the population present
in x   in all locationse
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distributing in
parallel energy
among agents

Figure 3.1. State transitions in EMAS irreducibility proof

86



• Stage 0: In every location in parallel:

– If the location is full, the agent is chosen and it performs sequentially the ac-
tion get with one of its neighbours in order to remove it (to enable incoming
migration from any other location). After removing one of its neighbours
the agent tries to perform any global action, e.g. migr (and fails) until the
end of the stage.

– If the location is empty, the trivial null state transition is performed.
– If the population in the location contains at least one agent, but is not full,

this agent also attempts to perform themigr action (but fails to do it) during
the whole stage. Final state of the Stage 0 is denoted by x01.

• Stage 1: A single location is chosen, in which the sum of agents’ energy exceeds
the migration threshold in the state x01 (based on assumption 1 of Theorem
3.1.1 there must be at least one agent). Then, the agent aggen1,n1 from this loca-
tion (possibly possessing the largest energy in the state x0e) is chosen. This agent
performs a sequence of actions get in order to gather all energy from all its neigh-
bours, finally removing them from the system (by bringing their energy to zero).
Now aggen1,n1 begins the first migration round in order to visit all locations
and to remove the agents (overtaking their energy by performing multiple get
actions). This round is finished in the location i1. Now, the agent possesses the
total energy of the system which equals 1. The final state of Stage 1 is denoted by
x12. Note that the state matrix has only one positive entry x12(i1, gen1, n

′
1) = 1

where n′1 ∈ Pi1 is the new copy number of the selected agent after all migrations
performed during the first round have occurred.

• Stage 2: The chosen agent aggen1,n′1
performs the clo action producing

aggen2,n2 , n2 ∈ Pi1 , which is one of the agents present in the state in the loc-
ation i2. The location i2 will contain the total energy greater than the migration
threshold emigr in the state xe. Next, the agent aggen1,n′1

passes all its energy to
this newly produced agent, finally being removed from the system. The purpose
of Stage 2 is to ensure that the agent recreating the population in the last location
i2 will be one of the agents present in this location in the state xe.

• Stage 3: Next, the agent aggen2,n2 begins the second migration round (starting
migration from the location i1), and visits all locations. In every visited location
i it performs the clo operation producing one of the agents ag

genfirsti ,nfirsti
that

will be present in this location in the state xe. In each non-empty location the
cloned agent will receive total energy that should be assigned to its location in
the state xe by the sequence of get operations. The agent finishes migration in the
location i2 (one of the islands containing a total energy in the state xe greater than
the migration threshold emigr). For the sake of simplicity the migrating agent
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after it reaches the final i2 location will be further called in the same manner
(ag

genfirsti ,nfirsti
).

• Stage 4: Every agent ag
genfirsti ,nfirsti

present in each non-empty location per-
forms in parallel a sequence of cloning actions recreating the population of
agents in its location in the state xe. The total number of parallel steps is not
greater than the maximal number of agents in the single location in the state xe.
Some agents may finish recreation earlier, and in this case they will choose the
action migr (and fail to perform it) until the end of the stage.

• Stage 5: In every location in parallel: the agent active in Stage 4 performs a
sequence of get actions with its neighbours in order to pass them the a sufficient
amount of energy required in the state xe.
It was shown that each of the aforementioned stages requires performing at most

a finite number of Markov chain steps. Moreover, it was shown that every aforemen-
tioned sequence has non-zero probability. For the details of the these features refer to
Appendix B including detailed estimates of the lower probability bounds and upper
bounds of the number of steps for every stage of the proof.

Remark 3.1.3 ([25, Remark 7.3]). Theorem 3.1.1 leads straightforwardly to the
statement that each possible state of EMAS is reachable after performing a fi-
nite sequence of transitions independently of the initial population. Therefore, also
the states containing the extrema are reachable. Thus any metaheuristic respecting
EMAS architecture and the assumption of Theorem 3.1.1 satisfies the asymptotic
guarantee of success [92, 150].

Theorem 3.1.2 ([25, Theorem 7.2]). If the assumptions of Theorem 3.1.1 hold, then
the Markov chain modelling EMAS is aperiodic.

Proof. Consider a state of the chain such that each location contains a single agent.
In this case let us assume that each agent chooses get as its next action. Because all
agents have chosen local actions, MA will allow them all to perform their actions,
however, the absence of neighbours will force all the agents to perform the trivial
(i.e. null) action. The transition probability function is then the s-fold composition of
ϑnull—see Eq. (3.9). Therefore, in this case the system will return to the same state in
one step. The probability of such transition is not less than (ιget)

s > 0. It means that
the state is aperiodic. The chain is irreducible (see Theorem 3.1.1) and therefore has
only one class of states, the whole state space, which obviously contains the aperiodic
state. On the other hand, from Theorem 2.2 of [94] it is clear that aperiodicity is a
state class property. In this case it means that all states of EMAS are aperiodic, which
concludes the proof.
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The following corollary is a consequence of Theorems 3.1.1 and 3.1.2.

Corollary 3.1.1 ([25, Corollary 7.1]). The Markov chain modelling EMAS is ergodic.

Remark 3.1.4 ([25, Remark 7.4]). The Markov chain (3.11) is ergodic in its strong
sense, namely it is not only irreducible, but also aperiodic. Such chains are often
called regular (see e.g. [94]). Obviously it is also ergodic in its weaker (and also
wide) sense, meaning that it is simply irreducible.

Since the space of states X is finite we may introduce the probability transition
matrix:

Q = {τ(x)(y)}, x, y ∈ X, (3.12)

where τ is the EMAS probability transition function—see Eq. (3.11). The Markov
chain describing the EMAS dynamics is a sequence of random variables (or, equi-
valently, probability distributions) {ξt} ⊂ M(X), t = 0, 1, . . . where ξ0 should be a
given initial probability distribution. Of course we have that

ξt+1 = Q · ξt, t = 0, 1, . . . (3.13)

Remark 3.1.5 ([25, Remark 7.5]). By Theorems 3.1.1 and 3.1.2 as well as the ergodic
theorem [12] there exists a strictly positive limit ξ̂ ∈M(X) (i.e., ξ̂(x) > 0,∀ x ∈ X)
of the sequence {ξt} as t → +∞. This equilibrium distribution does not depend on
the initial probability distribution ξ0.

3.2. Formal analysis of iEMAS

Following the concept of iEMAS and its structural model provided in Section
2.2.1 deliberations on asymptotic features of this system are given here. Starting with
a detailed derivation of the system transition function, the ergodicity conjecture is
formulated and its proof is outlined [26].

3.2.1. iEMAS dynamics

At every observable moment at which EMAS has the state x ∈ X all agents
in all locations notify their LAi their intent to perform an action, all LAi choose an
agent with the distribution given by the function agseli(x) and then notify theMA of
their intent to let one of their agents to perform an action. MA chooses the location
with the probability distribution locsel(x).

The model of EMAS dynamics is extended here in order to model the behaviour
of iEMAS. The probability that in the chosen location i ∈ Loc the agent or the
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lymphocyte wants to perform a local action is:

ξi(x) = typesel(x)({0})
∑
gen∈U

p∑
n=1

(agseli(x)({gen, n})

·ω(gen, x)(Actloc)) + typesel(x)({1}). (3.14)

The probability that MA will chose the location with the agent intending to perform
the local action is:

ζ loc(x) =
∑
i∈Loc

locsel(x)({i})ξi(x). (3.15)

Of course, the probability that MA will choose the global action is:

(1− ζ loc(x)) = ζgl(x). (3.16)

If the global action has been chosen, the state transition is given by:

τ gl(x)(x′) =
∑
i∈Loc

locsel(x)({i}) ·

 ∑
gen∈U

p∑
n=1

agsel(x)({gen, n})·

 ∑
α∈Actgl

ω(gen, x)({α}) · %gen,nα (x)(x′)

 . (3.17)

The set of action sequences containing at least one local action is now defined:

Act+1loc =

{
(α1, . . . , αs) ∈ (Act ∪ Tcact)s;

s∑
i=1

[αi ∈ (Actloc ∪ Tcact)] > 0

}
(3.18)

The probability that in the location i-th the agent aggeni,ni or the lymphocyte
tcg̃eni will choose the action αi is:

µαi,geni,ni,g̃eni(x) = typesel(x)({0}) · agseli(x)({geni, ni})ω(geni, x)({αi})+
typesel(x)({1})tcseli(x)({g̃eni})ϕ(g̃eni, x)({αi}). (3.19)

Now, a multi-index is defined:

ind = (α1, . . . , αs; (gen1, n1), . . . , (gens, ns); (g̃en1), . . . , (g̃ens)
)

∈ IND = (Act ∪ Tcact)s × (U × {1, . . . , p})s × U s, (3.20)
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the probability that in consecutive locations agents aggeni,ni or lymphocytes tcg̃eni
will choose the actions αi is:

µind(x) =
s∏
i=1

µαi,geni,ni,g̃eni(x). (3.21)

The transition function for parallel system is the following:

τ loc(x)(x′) =
∑

(α1,...,αs)∈Act+1loc

∑
ind∈IND

µind(x)(πind1 (x) ◦ , . . . , ◦πinds (x))(x′),

(3.22)

where πi is defined as:

πindi (x) =


%geni,niαi (x), αi ∈ Actloc
ηg̃eniαi (x), αi ∈ Tcact
ϑnull, αi ∈ Actgl.

(3.23)

The value of (πind1 (x) ◦ , . . . , ◦πinds (x))(x′) does not depend on the composition
order, because transition functions associated with local actions commutate pairwise
(this feature of iEMAS actions may be proved similarly to the case of EMAS, cf.
[25]) . Finally, the following observation may be derived:

Observation 3.2.1 ([26, Observation 1]). The probability transition function for the
parallel iEMAS model is given by the formula

τ(x)(x′) = ζgl(x)τ gl(x)(x′) + ζ loc(x)τ loc(x)(x′) (3.24)

and formulas (3.14)–(3.23).

Observation 3.2.2 ([26, Observation 2]). The stochastic state transition of iEMAS
given by formula (3.24) satisfies the Markov condition.

Proof. All transition functions and probability distributions given by formulas
(3.14)–(3.23) depend only on the current state of the system, which motivates the
Markovian features of the transition function τ given by (3.24). The transition func-
tions do not depend on the step number at which they are applied, which motivates
the stationarity of the chain.
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3.2.2. Ergodicity of iEMAS

In this section, an ergodic conjecture of the Markov chain describing the beha-
viour of iEMAS is presented. A sequence of proof stages is also given, it is shown
that after estimating the upper bounds of their steps and lower bounds for their prob-
abilities may become a full formal proof of iEMAS ergodicity in much the same way
as in Section 3 and Appendix B for EMAS [26].

The system which uses the following actions (they may be defined in details in
similar way as it is shown in Section 2.2.3), is considered in this section:
• repr, clo, lse, migr – these actions are inherited unchanged from EMAS.

• get – this action is modified. When the agent performs this action, and its energy
(or energy of evaluated agent) reaches zero, it activates the lymphocyte contain-
ing the genotype of the inactivated agent.

• give – this is an action executed solely by lymphocytes. It is performed every
time the lymphocyte is activated and decreases the lymphocyte’s energy, which
makes the lymphocyte be deactivated (when its energy reaches zero).

• kill – another lymphocyte’s action, removing (or penalising) the computing
agent (performed when the genotype of the tested agent matches the pattern con-
tained in the lymphocyte).
Features of these actions, in particular if they are global or local, may be proved

similarly as in 2.2.3, resulting in the following actions taxonomy:

Actloc = {get, repr, clo, lse, give, kill},
Actgl = {migr}.

Conjecture 3.2.1 ([26, Theorem 1]). Assume that the following assumptions hold.
1. The migration energy threshold is lower than the total energy divided by the

number of locations emigr < 1
s . This assumption ensures that there will be at

least one location in the system in which an agent is capable of performing mi-
gration (by gathering enough energy from its neighbours).

2. The quantum of energy is lower than or equal to the total energy divided by the
maximal number of agents that may be present in the system ∆e 6 1∑s

i=1 qi
. This

assumption makes it possible to achieve a maximal population of agents in the
system.

3. Reproduction (cloning) energy is lower than two energy quanta erepr 6 2∆e.

4. The amount of energy passed from parent to child during a cloning action is
equal to ∆e (so n1 = 1).

5. The maximal number of agents in every location is greater than one, qi > 1, i =
1, . . . , s.
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6. Locations are all connected, i.e. Top = Loc2.

7. Each active agent can be selected by its LAi with strictly positive probability.

8. The families of probability distributions which are the parameters of EMAS have
uniform, strictly positive lower bounds.

Then the Markov chain modelling iEMAS (see equation (3.24)) is irreducible, i.e. all
its states communicate.

Proof outline 3.2.1 ([26, Section 7]). In order to prove Conjecture 3.2.1, it is enough
to show that the passage from xb to xe (two arbitrarily chosen states from X) may be
performed in a finite number of steps with the probability strictly greater than zero
(see Fig. 3.2).

x b

xe

x
01a

x
1b1c

x
1c2

x
4a4b

x
4b5

Stage 0:
removing one
agent in full
locations

Stage 1a:
removing all 
agents from all
locations by the
chosen agent

Stage 2:
transformation
to an agent
present in x

Stage 3:
agent migrates
creating one
agent present
in x    in all
locations

e

Stage 4b:
creating in parallel
the population present
in x   in all locationse

Stage 5:
distributing in
parallel energy
among agents

x
1a1b

Stage 1b:
lymphocytes try to kill 
the agent but fail, 
until all are removed

Stage 1c:
the agent migrates 
between the locations 
removing all agents 
and lymphocytes

Stage 4a:
agents recreate
lymphocytes in
all locations

x
23

x
34a

Figure 3.2. State transitions in iEMAS irreducibility proof outline

Consider the following sequence of stages [26].
• Stage 0: In every location in parallel: If the location is full, an agent is chosen,

and it performs sequentially an evaluation action with one of its neighbours in
order to remove it (to make incoming migration possible from any other location,
in case this location is full). After removing one of its neighbours the agent tries
to perform any global action, e.g. migration (and fails), until the end of the stage.
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Otherwise, the trivial null state transition is performed. Final state of the Stage
0 is denoted by x0e.

• Stage 1 a: One location is chosen, at which the sum of agents’ energy exceeds
the migration threshold in the state x0e (based on assumption 1 of Theorem
3.2.1 there must be at least one). Then one agent from this location aggen1,n1

(possibly with the largest energy in the state x0e) is chosen. This agent performs
a sequence of evaluation actions in order to gather all energy from all its neigh-
bours, finally removing them from the system (by bringing their energy to zero).

• Stage 1 b: If there are any lymphocytes in the current location, they perform
killing action, one by one, on the agent aggen1,n1 , but fails to remove it from the
system until all lymphocytes are removed. In the end, only one agent is present
in the location.

• Stage 1 c: Now this agent begins the first migration round in order to visit all
locations and remove the agents (overtaking their energy by performing multiple
get actions) and all lymphocytes. This round is finished at the location i1. Now,
agent aggen1,n1 possesses the total energy of the system which equals 1. Final
state of Stage 1 is denoted by x1e. Note that the state matrix has only one positive
entry x1e(i1, gen1, n1) = 1.

• Stage 2: The agent performs a cloning action producing one of the agents
(aggen2,n2) that will be present in the location i2, which is one of the locations
in the state xe containing the total energy greater than the migration threshold.
Having passed all of its energy to this new agent, it is finally removed from
the system. The purpose of Stage 2 is to ensure that the agent recreating the
population in last location i2 will be one of the agents present in this location
in the state xe. Otherwise, if i2 is full in the state xe, aggen1,n1 cannot recre-
ate this population. If aggen1,n1 is active in the location i2 at the state xe (i.e.
xe(i2, gen1, n1) > 0), Stage 2 may be omitted (in this case aggen1,n1 takes the
role of aggen2,n2 in the consecutive stages).

• Stage 3: Next, the agent aggen2,n2 begins the second migration round (starting
migration from the location i1) and visits all locations. In each visited location
it performs a cloning action and produces one of the agents that will be present
in this location in the state xe. The cloned agent in each non-empty location (de-
noted by ag

genfirsti ,nfirsti
) will receive the total energy that should be assigned to

its location, by the sequence of evaluation actions. The agent finishes migration
after recreating the population in the location i2 (one of the islands containing
the total energy in the state xe greater than the migration threshold).

• Stage 4 a: In the system, the following sequence of actions assigned with con-
secutive locations labelled i ∈ Loc, non-empty in the state xe, is performed:
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each agent ag
genfirsti ,nfirsti

performs a cloning action to produce an agent with
a genotype of one of the lymphocytes existing in the location in the state xe. Now
it performs a sequence of evaluation actions to remove the created agent, so the
desired lymphocyte is produced. The lymphocyte performs a sequence of energy
lowering actions to adjust its energy to the level observed in the state xe. This is
repeated until all the lymphocytes present in xe are recreated.

• Stage 4 b: In the system, the following sequence of actions assigned with the
consecutive locations labelled i ∈ Loc, non-empty in the state xe, is performed:
every agent ag

genfirsti ,nfirsti
performs a sequence of cloning actions, recreating

the population of agents in its location in the state xe.

• Stage 5: In every location in parallel: agent ag
genfirsti ,nfirsti

performs a sequence
of evaluation actions with its neighbours in order to pass to them a sufficient
amount of energy, required in the state xe.

Assuming that Conjecture 3.2.1 is true, similarly to the EMAS case, the follow-
ing features may be proved, which lead directly to the statement that every possible
state of iEMAS is reachable (with positive probability) after performing a finite se-
quence of transitions independently of the initial population.

1. All states containing the extrema are reachable from an arbitrary initial state.
Thus iEMAS satisfies asymptotic guarantee of success in the sense of [162, 92,
150] [26, Corollary 1].

2. If the assumptions of Theorem 3.2.1 hold, then the Markov chain modelling
EMAS is aperiodic [26, Theorem 2].

3. As a consequence of features 1 and 2, the Markov chain modelling EMAS is
ergodic [26, Corollary 2].

4. It is noteworthy that the Markov chain (3.24) is ergodic in its strong sense (not
only irreducible but also aperiodic). Such chains are quite often called regular
(see e.g. [94]) [26, Remark 1].

5. Since the space of states X is finite the probability transition matrix is intro-
duced:

Q = {τ(x)(y)}, x, y ∈ X, (3.25)

where τ is the iEMAS probability transition function (see Eq. (3.24)). The
Markov chain describing the iEMAS dynamics is a sequence of random vari-
ables (or, equivalently, probability distributions) {ξt} ⊂ M(X), t = 0, 1, . . .,
where ξ0 should be a given initial probability distribution. Of course, the follow-
ing condition holds:

ξt+1 = Q · ξt, t = 0, 1, . . . (3.26)
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6. By Theorems 3.2.1 and feature 4, as well as the ergodic theorem [12] there exists
a strictly positive limit ξ̂ ∈ M(X) (i.e., ξ̂(x) > 0,∀ x ∈ X) of the sequence
{ξt} as t → +∞. This equilibrium distribution does not depend on the initial
probability distribution ξ0 [26, Remark 2].

3.3. Goals attained in formal analysis

The theoretical results obtained in this research, especially the most important
feature of ergodicity proved for EMAS (including its memetic versions) and iEMAS,
are crucial for studying features of stochastic global optimisation metaheuristics.

The strong ergodicity of the finite state Markov chain modelling the metaheurist-
ics shows that these systems can reach an arbitrary state (arbitrary population) in the
finite number of iteration with the probability equal to 1 which implies the asymptotic
stochastic guarantee of success (see 3.1.3).

The formal framework constructed made it possible to analyse similar systems
(e.g. HGS [160] or parallel version of Vose’s algorithm [161]) and will be considered
for future analysis of other novel and classical computing systems (e.g. in the near fu-
ture, an analysis of evolutionary algorithm using tournament selection is envisaged).

It is worth noting that apart from formal models focused on particular aspects of
population-based metaheuristics (mostly Simple Genetic Algorithm [187, 191] and
selected Evolution Strategies [156, 154]), there are no similar approaches to model-
ling such complex computing systems, as agent-based ones. It seems to be one of the
greatest advantages of the research presented in this monograph.



4. Experimental verification of EMAS

In this chapter, selected experiments with a detailed description of the researched
problems and discussion of the results are presented. A wider selection of experi-
mental results, along with a description of experimental configurations may be found
in Appendix A. The experimental results were obtained using a dedicated software
framework, which was implemented on the basis of experience gained in develop-
ing computing and simulation agent-based frameworks [60]. Based on this frame-
work, a series of experiments was conducted, considering efficiency verification of
EMAS and PEA, their memetic and immunological variations, using selected high-
dimensional benchmark functions. Later the influence of different parameters on the
computing results is examined, and finally, the overall efficiency of these systems is
tested, using selected real-world problems.

In captions of the graphs, short symbolic explanation of the presented function
is given in an easily understandable function-like form, e.g. when a graph presents
the best fitness value in the subsequent steps, the caption contains the following:
bestFitness(step)

4.1. EMAS in solving benchmark problems

Considering the “no free lunch theorem” [193], it is still important to try to test
how the examined metaheuristic works when applied to different well-known prob-
lems, i.e., benchmark functions [49].

In order to obtain plausible results, the systems compared should be parametrised
in the most similar way. So it is the case presented in this section, as EMAS, and its
memetic variants (Baldwinian and Lamarckian) are compared with PEA (along with
respective memetic modifications). Later, a comparison between EMAS and its im-
munological variant (iEMAS) is made. Finally two real-world problems are tackled:
optimisation of parameters of game advisory strategy and step and flash imprint litho-
graphy inverse problem.
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4.1.1. Definition of benchmark problems

The continuous benchmark functions considered in this monograph were selec-
ted from the set described in [49], their visualisations are presented in Figure 4.1:
• Rastrigin:
f(x) = 10 · n+

∑n
i=1(x2

i −Acos(2πxi))
−5.12 ≤ xi ≤ 5.12
global minimum: f(x) = 0, xi = 0, i ∈ [1, n], see Fig. 4.1a.
• Ackley:

f(x) = −a · e−b
√∑n

i=1
x2
i

n − e
∑n
i=1 cos(c·xi)

n + a+ e;
a = 20, b = 0.2, c = 2 · π, i ∈ [1, n],
−1 ≤ xi ≤ 1,
global minimum: f(x) = 0, xi = 0, i ∈ [1, n], see Fig. 4.1b.
• De Jong:
f(x) =

∑n
i=1 x

2
i

−5.12 ≤ xi ≤ 5.12,
global minimum: f(x) = 0, xi = 0, i ∈ [1, n], see Fig. 4.1c.
• Rosenbrock:
f(x) =

∑n−1
i=1 100 · (xi+1 − x2

i )
2 + (1− xi)2

−2.048 ≤ xi ≤ 2.048,
global minimum: f(x) = 0, xi = 0, i ∈ [1, n], see Fig. 4.1d.
• Schwefel:
f(x) =

∑n
i=1−xi · sin(

√
|xi|)

−500 ≤ xi ≤ 500,
global minimum: f(x) = −n · 418.9829, xi = 420.9678, i ∈ [1, n], see Fig.
4.1e.
• Axis Parallel Hyperellipsoid:
f(x) =

∑n
i=1 i · x2

i

−5.12 ≤ xi ≤ 5.12,
global minimum: f(x) = 0, xi = 0, i ∈ [1, n], see Fig. 4.1f.
• Moved Axis Parallel Hyper Ellipsoid:
f(x) =

∑n
i=1 5 · i · x2

i

−5.12 ≤ xi ≤ 5.12,
global minimum: f(x) = 0, xi = 5 · i, i ∈ [1, n], see Fig. 4.1g.
All of the selected functions are multimodal or deceptive (where gradient in-

formation may lead the search astray), except for De Jong benchmark that is a convex
function. This selection of course does not deplete the benchmarks, however, it seems
to present a subjective, but reasonable set of reference problems, frequently used in
testing population-based metaheuristics.
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(f) Axis parallel hyperellipsoid
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(g) Moved axis parallel hyperellipsoid

Figure 4.1. Visualisation of the 2-dimensional cases of continuous benchmark functions
used
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4.1.2. Classical EMAS and PEA

Here, before going to more sophisticated versions of these systems, the com-
parison results of classical EMAS with PEA are given. It is to note that PEA was
implemented according to a scheme proposed by Michalewicz [131], namely popu-
lation initialisation, and looping through evaluation, selection, crossover and muta-
tion of the individuals. In the discussed case real-valued encoding is used and allo-
patric speciation is introduced according to so-called island-model of evolution [30].
The problem considered in this section is optimisation of 100-dimensional Rastrigin
benchmark for several different configurations (after Pisarski, Rugała, Byrski and
Kisiel-Dorohiniki [145]).

In Figure 4.2, a simple comparison of the computation results, obtained for one-
population configuration (1 island, 40 individuals), namely observation of the best
fitness in each step of computation may be seen.

Figure 4.2. EMAS vs. PEA (1 island, 40 agents/individuals) bestFitness(step)

It turns out that EMAS outperforms PEA for over two orders of magnitude. This
is a very promising result, and it may be further verified by checking the results
obtained in both experiments in the last step presented in Table 4.1.

In this table, the results obtained for other configurations (3 islands, 40 individu-
als) are also presented. In these cases, the domination of EMAS is still retained. It is
easy to see that the results are repeatable (as standard deviation is relatively low).

Another important observation is that the multi-population models of computa-
tion tends to be better than single-population ones, as the former have better capabilit-
ies of exploration (as the population is decomposed to subpopulations), still retaining
the capability of exploitation (in each single subpopulation). It should also be noted
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Table 4.1. EMAS and PEA optimisation results obtained for 25 and 40 individuals

Number of islands 1 island 3 islands
Computing system EMAS PEA EMAS PEA

25 individuals
Result 1.77 242.96 0.71 156.34
St. Dev. 0.22 6.54 0.10 6.84
St. Dev. % 12.24 2.69 14.46 4.38

40 individuals
Result 0.90 180.48 0.37 111.45
St. Dev. 0.13 6.45 0.05 4.16
St. Dev. % 15.24 3.57 13.56 3.73

that increasing the number of individuals (from 25 to 40) improved the final result
(although this requires a further proving and many more experimental runs).

In Figures 4.3a and 4.3b, diversity computed according to MSD and MOI
schemes are shown. It is easy to see that EMAS has lower diversity than PEA in
both cases. However, it turns out that it does not hamper the computing efficiency (as
EMAS outperforms PEA). Moreover, diversity, though lower, it is still quite stable
(see standard deviation range marked on the graphs), which leads to the conclusion
that though the population in EMAS is not so diverse as in PEA, the exploration and
exploitation features of the system are balanced.

(a) divMSD(step) (b) divMOI (step)

Figure 4.3. Diversity of EMAS and PEA computed according to MOI and MSD schemes, 1
island 40 agents/individuals with standard deviation

The final values of both diversity measures (MOI and MSD) shown in Tables
4.2, 4.3 confirm the observation of the computation behaviour shown in Figures 4.3a
and 4.3b.
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Table 4.2. EMAS and PEA MOI diversity for 25 and 40 individuals

Number of islands 1 island 3 islands
Computing system EMAS PEA EMAS PEA

25 individuals
Result 0.56 0.99 0.65 1.31
St. Dev. 0.22 0.14 0.29 0.14
St. Dev. % 38.67 14.04 44.05 10.87

40 individuals
Result 0.50 1.00 0.57 1.30
St. Dev. 0.23 0.14 0.30 0.15
St. Dev. % 45.01 13.84 52.35 11.16

Table 4.3. EMAS and PEA MOI diversity for 25 and 40 individuals

Number of islands 1 island 3 islands
Computing system EMAS PEA EMAS PEA

25 individuals
Result 77.51 287.63 271.64 1253.43
St. Dev. 903.60 1004.92 2883.95 3000.84
St. Dev. % 1165.86 349.37 1061.69 239.41

40 individuals
Result 135.22 313.53 460.94 1340.27
St. Dev. 1590.73 1030.57 4962.78 3066.69
St. Dev. % 1176.37 328.69 1076.66 228.81

In order to examine the dynamics of the computing process for PEA and EMAS,
an average number of steps between subsequent improvements of the best fitness
observed are presented in Table 4.4. It is easy to see that also in this case, EMAS
outperforms PEA. This result confirms that lower diversity of EMAS as compared to
PEA does not hamper the capability of improving the result of the computation.

Another confirmation of the above observation may be found when looking at
Table 4.5. There, a maximal number of steps needed for improving the value of the
fitness function are shown. It is easy to see that EMAS outperforms PEA also in this
case.

Table 4.4. Average number of steps between subsequent improvements
of the best fitness for 25 and 40 individuals

Number of islands 1 island 3 islands
Computing system EMAS PEA EMAS PEA

25 individuals
Result 116.90 133.74 142.61 195.33
St. Dev. 4.26 72.37 5.12 72.90
St. Dev. % 3.64 54.12 3.59 37.32

40 individuals
Result 119.07 166.13 147.16 234.57
St. Dev. 4.43 87.15 5.97 77.02
St. Dev. % 3.72 52.46 4.05 32.84
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Table 4.5. Maximal number of steps between subsequent improvements
of the best fitness for 25 and 40 individuals

Number of islands 1 island 3 islands
Computing system EMAS PEA EMAS PEA

25 individuals
Result 4042.37 27441.57 3940.23 42225.17
St. Dev. 1580.74 17264.97 1330.81 17906.04
St. Dev. % 39.10 62.92 33.77 42.41

40 individuals
Result 3850.93 33019.87 3596.30 47966.66
St. Dev. 1173.24 23218.82 889.32 20118.41
St. Dev. % 30.47 70.32 24.73 41.94

After checking that classical EMAS may become a reliable weapon of choice to
deal with a difficult, e.g. black-box problem, it is time to consider other versions of
EMAS and PEA capable of bringing substantial improvements to the computing pro-
cess (e.g. balancing exploration and exploitation capabilities or reducing the number
of fitness function calls).

4.1.3. Memetic EMAS and PEA

The first and the most important thing to consider is the efficiency of the systems
being compared, measured with the classical means (after Byrski, Korczyński and
Kisiel-Dorohinicki [24]). Therefore, the fitness value of the best individual reached
in certain generation (PEA) compared to a certain step of computation (EMAS) was
examined. In Fig. 4.4, both PEA and EMAS fitnesses are shown, for all variants of
these systems (evolutionary and memetic ones). The problem considered in this graph
was 50-dimensional Rastrigin benchmark function.

It is easy to see that EMAS turns out to be generally better than PEA at evading
the local extrema and continuing the exploration, while PEA is apparently already
stuck. Drawing comparison between the memetic and evolutionary versions of the
systems shows that Lamarckian memetics improves both PEA and EMAS, while
Baldwinian memetics in the case considered produces results quite similar to the
ones produced by the basic evolutionary versions.

Memetic operators It may be quite interesting to check how the application of
particular memetic operators changes the outcomes of the experiments. In the given
experiments, gradient-free steepest descent algorithm based on choosing the best one
from 10 potential mutated individuals was used. Such a procedure was repeated 10
times and the best up-to-date result was returned. The results of the experiments are
shown in Figure 4.5.
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Figure 4.4. PEA and EMAS (memetic and evolutionary versions) fitness for 50-dimensional
Rastrigin benchmark
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Figure 4.5. PEA and EMAS fitness for two different memetic operators (Solis Wets and
isotropic mutation) applied

The local search algorithms were implemented according to the two following
strategies:
• Isotropic mutation—it is a method aimed at generating uniform sampling points

on and within N-dimensional hyperspheres. The idea of the Isotropic method al-
gorithm is as follows: firstly the N normal distributed numbers zi are generated.
Then the vectors x are computed by making a projection onto surface by dividing

each generated number zi by r =
√∑N

i=1 z
2
i . Since the z vectors are isotrop-

ically distributed, the vectors x will be of norm 1 and also isotropically distrib-
uted. Therefore, the points will be distributed uniformly on the hypersphere. The
generation of points inside the hypersphere may be achieved by rescaling the
coordinates obtained in the previous steps [122].

• Solis and Wets’ algorithm—it is a randomised version of optimisation technique
which belongs to a hill climbing family. Every step size can be adapted as fol-
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lows: it starts at a current point x and checks if either x + d or x − d is better,
where d is a deviate chosen from a normal distribution whose standard devi-
ation is given by a parameter ρ. If the answer is positive then a move to a better
point is made and a success is recorded. Otherwise, a failure is recorded. If sev-
eral successes in a row happen, parameter ρ is increased to make longer moves.
However, if several failures in a row are recorded, the ρ is decreased to focus the
search [170].

It is easy to see that applying dedicated complex local search method (Solis-Wets
operator) helps in quick approach to the final candidate solution for all the experi-
ments. PEA gets stuck again in a local extremum, while EMAS retains better explor-
ation capabilities which is pointed out by the curvature of the graphs, and also by
higher standard deviation of the results. It is noteworthy that enhancing EMAS with
dedicated local-search method (Solis-Wets), yielded very good results for Lamar-
ckian memetics, while Baldwinian search again was the worst.

Number of fitness function calls The results observed at the beginning of this
section, in particular PEA being outperformed by EMAS (see Fig. 4.4 and Table
4.7) require several important aspects to be discussed. First, it should be noted that
in the comparison between these two algorithms, based on the number of steps or
generations, EMAS is somewhat more handicapped. In EMAS, distributed selection
mechanism allows for parallel ontogeny so that at one observable moment a certain
number of individuals in the population are about to die, another group can be almost
ready for reproduction etc. In PEA global synchronisation is used and the whole pop-
ulation of individuals is processed at once. Therefore, PEA seems to be potentially
better suited for exploration purposes, as it processes significantly more individuals
than EMAS: conversely EMAS turns out to be more efficient.

Distributed selection mechanism in EMAS results in the fact that in one step
of system work, the number of fitness function calls is far lower than in PEA. In
Figure 4.6, the number of new individuals produced in each step for PEA, EMAS
and for their modifications is shown. It should be noted that in PEA, the number of
fitness function calls per generation is constant and equals the number of individuals
that was 90 per one generation (30 per one island) in the experiments. Lamarckian
and Baldwinian modifications lead to multiplication of this number in the case of
the experimental results by 100, therefore the number of fitness computations for
memetic PEAs equals 900 per generation.

The number of fitness function calls in the case of EMAS, which oscillates
around 10, is a significant advantage of this computing method. Moreover, Lamar-
ckian modification of EMAS leads to obtaining about 200 fitness computations per
step (still significantly lower than in the case of PEA), whereas Baldwinian is the
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Figure 4.6. Number of fitness function calls in EMAS and its memetic variations

most costly one with 1000 as estimate of the number of fitness computations. It is
easy to see that the low number of fitness function calls for EMAS makes it an inter-
esting weapon of choice for dealing with problems characterised by a costly fitness
function (e.g. inverse problems). In this case, the complexity of the implementation of
the whole system supporting the notion of agency, communication, naming services
etc. is overwhelmed by the complexity of the fitness function. Therefore, looking for
a more intelligent search algorithm becomes reasonable, despite the intrinsic com-
plexities imposed by its implementation.

Step execution time The most accurate evaluation of efficiency of the systems is
observation of the execution time of computation, or as in the case of this analysis,
of one computation step. Average times of step execution gathered during one exper-
iment are shown in Table 4.6, along with dispersion estimation1.

Table 4.6. Execution time of steps

System Avg. time [ms] Std. dev Std. dev %
EMAS 82.46 25.43 30
EMAS + Lamarck 138.48 45.03 32
EMAS + Baldwin 120.84 34.02 28
PEA 75.63 6.05 7
PEA + Lamarck 487.84 127.48 26
PEA + Baldwin 79.41 10.71 13

At first glance, computing with EMAS bears higher time cost than with PEA,
however one must remember that these results were collected for the case of optim-

1These results were gathered using a server-class hardware (SUN FIRE X2100: Dual-Core AMD
Opteron R© Processor 1220 2.8GHz, 4GB RAM (2 x 2GB), 1 x 250GB SATA).
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isation of simple benchmark function, and the total execution time will surely be
much higher for PEA than for EMAS in the case of complex fitness function (cf.
the paragraph describing the average number of fitness function calls in the current
section). Moreover, these results clearly show that computing with EMAS is more
unpredictable than with PEA, as the standard deviations are higher.

Experiments repeatability High dispersion of the results calls for additional ana-
lysis of repeatability of the experiments. Therefore, box-and-whiskers plots (con-
taining minimum, maximum value, median, first and third quartiles) were prepared
for selected experimental runs. In Figure 4.7 these plots are presented for PEA and
EMAS fitnesses. Based on standard deviation, it is easy to see that these experiments
are repeatable.
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Figure 4.7. Box-and-whiskers plot for EMAS and PEA fitness

Diversity Observation of diversity measures for the systems show that the non-zero
diversity is still retained, though falls down from the beginning of computation. How-
ever, the curvature of the graphs show that loss of diversity is much quicker in PEA
than in EMAS (see Fig. 4.8). The same observation holds for all memetic variants
of the system. Fortunately, it never reaches zero (compare experiments presented in
[136]). Both diversity measures (MOI and MSD) yield generally similar results (loss
of diversity is clearly seen, and EMAS losses diversity significantly later than PEA).

Dimensionality of the problem The degree of difficulty of the problems may be
measured in different ways, considering e.g. the number of local extrema, features of
the search space, dimensionality etc. In order to check, how the systems behave when
they are faced with problems of different difficulty, dimensionality was chosen as its
determinant. Therefore, an experiment based on conducting search for optima for
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Figure 4.8. PEA and EMAS diversity measurements

benchmarks described in spaces of different dimensionality was conducted. It should
be noted that such a test is useful to assess features of the search systems, as the
high dimensionality of input and output variables presents an exponential difficulty
(i.e., the effort grows exponentially with dimensions) for both problem modelling and
optimisation [110].

Figure 4.9 shows the graphs depicting the fitness value dependent on the simula-
tion step for PEA and EMAS beginning from the 10-dimensional Rastrigin problem,
and finishing on 100-dimensional one. It is easy to see that dimensionality of the
problem greatly influences the efficiency of the techniques researched. It is easy to
see that the higher dimension, the lower efficiency of the search technique.

Another important feature that may be found is the exploration capability. For
PEA experiments, all the examined methods seem to get stuck in a local extremum,
starting quite early (about the 1000-th generation in the case of higher dimensions,
and even the 100-th generation when considering lower ones). In the case of EMAS
techniques, a similar feature is a little bit harder to observe (besides the lowest dimen-
sions) for both memetic operators used, and capabilities of improving the search res-
ult for PEA and EMAS using Lamarckian variation operators are not clearly visible.
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Figure 4.9. PEA and EMAS for 10–100 dimensional Rastrigin problem

Outcome of the computation In Table 4.7, the final values obtained in the 3000-
th step are presented. It seems that EMAS outperformed all other systems (the best
final results are pointed out using bold font). However, as the selected benchmarks
are difficult, which is caused by its nature and high dimensionality, dispersion of the
results is quite high. The diversity-related measures presented in Table 4.8 show that
the final diversity is the highest in the case of PEA experiments. However (see Figure
4.8), the curvature of the graphs point out that though the final result of the diversity
for EMAS may be worse than for PEA, the diversity is lost more slowly, helping to
reach better final results than those obtained for PEA.
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Table 4.7. The results obtained in the 3000-th step
of computation for all the examined systems.

Result St. Dev. Min value Median Max value
Ackley

PEA 2.03 0.16 1.66 2.09 2.26
EMAS 0.58 0.17 0.27 0.59 0.93
PEA + Lamarck 1.47 0.19 0.95 1.44 1.83
EMAS + Lamarck 0.43 0.20 0.09 0.44 0.85
PEA + Baldwin 2.03 0.14 1.77 2.03 2.38
EMAS + Baldwin 0.58 0.19 0.26 0.59 0.92

de Jong
PEA 7.14 1.57 5.09 7.02 10.78
EMAS 0.81 0.65 0.18 0.49 2.79
PEA + Lamarck 4.34 1.20 2.25 4.03 7.17
EMAS + Lamarck 0.67 0.87 0.03 0.35 4.31
PEA + Baldwin 7.46 1.30 5.40 7.26 10.65
EMAS + Baldwin 0.70 0.60 0.18 0.56 3.17

Rosenbrock
PEA 1219.37 346.69 741.61 1162.32 2478.04
EMAS 206.46 115.42 70.02 168.26 572.19
PEA + Lamarck 694.01 222.61 391.96 668.68 1557.13
EMAS + Lamarck 190.49 137.38 49.99 151.99 629.38
PEA + Baldwin 1233.87 285.51 766.65 1184.23 1760.46
EMAS + Baldwin 264.51 262.63 78.72 195.85 1266.85

Schwefel
PEA -12942.72 790.64 -14669.28 -12840.60 -11152.09
EMAS -13999.87 1023.44 -15942.66 -14194.64 -11767.72
PEA + Lamarck -13557.15 725.19 -14560.63 -13640.47 -11800.74
EMAS + Lamarck -13680.38 901.95 -15517.86 -13682.55 -11695.06
PEA + Baldwin -13051.08 795.88 -14274.21 -13157.16 -11370.22
EMAS + Baldwin -13684.54 827.41 -15756.03 -13621.34 -12112.40

Axis Parallel Hyper Ellipsoid
PEA 155.83 30.89 93.62 152.67 229.39
EMAS 16.11 15.05 3.46 9.96 63.12
PEA + Lamarck 82.56 26.84 22.06 80.32 146.14
EMAS + Lamarck 9.90 13.87 0.62 7.11 78.17
PEA + Baldwin 153.35 25.93 99.18 153.01 205.77
EMAS + Baldwin 18.51 17.24 3.69 11.29 66.82

Moved Axis Parallel Hyper Ellipsoid
PEA 784.53 162.22 471.90 770.15 1170.59
EMAS 50.69 39.10 15.54 35.19 181.81
PEA + Lamarck 445.18 126.97 261.73 402.70 769.96
EMAS + Lamarck 58.69 64.73 3.12 32.81 273.17
PEA + Baldwin 780.84 166.14 493.92 775.91 1119.10
EMAS + Baldwin 78.09 65.54 15.46 45.96 218.38
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Table 4.8. The diversity measures obtained in the 3000-th step
of computation for all the examined systems

MSD diversity MSD diversity st. dev. MOI diversity MOI diversity st. dev.
Ackley

PEA 0.70 0.15 173.02 40.47
EMAS 0.31 0.03 46.45 7.23
PEA + Lamarck 0.65 0.12 182.92 35.83
EMAS + Lamarck 0.32 0.05 43.62 7.32
PEA + Baldwin 0.74 0.16 195.87 42.56
EMAS + Baldwin 0.33 0.03 46.41 7.20

de Jong
PEA 0.75 0.13 254.35 56.52
EMAS 0.52 0.11 74.19 14.37
PEA + Lamarck 0.72 0.10 226.00 39.86
EMAS + Lamarck 0.51 0.09 70.41 14.95
PEA + Baldwin 0.77 0.16 248.11 37.53
EMAS + Baldwin 0.54 0.10 78.35 15.45

Rosenbrock
PEA 0.77 0.13 264.41 55.31
EMAS 0.51 0.12 81.17 23.04
PEA + Lamarck 0.69 0.10 232.09 34.17
EMAS + Lamarck 0.45 0.07 69.17 13.73
PEA + Baldwin 0.81 0.15 276.26 61.61
EMAS + Baldwin 0.49 0.09 73.06 14.87

Schwefel
PEA 0.78 0.12 255.55 44.81
EMAS 1.82 0.42 1615.33 356.51
PEA + Lamarck 6.67 4.06 3589.18 2945.89
EMAS + Lamarck 1.69 0.29 1426.96 298.61
PEA + Baldwin 0.88 0.16 266.75 51.20
EMAS + Baldwin 1.81 0.37 1615.79 303.59

Axis Parallel Hyper Ellipsoid
PEA 1.05 0.38 298.34 73.49
EMAS 0.57 0.13 90.35 20.05
PEA + Lamarck 0.98 0.33 271.58 56.41
EMAS + Lamarck 0.56 0.13 81.67 17.92
PEA + Baldwin 1.04 0.23 315.22 71.53
EMAS + Baldwin 0.56 0.11 84.28 17.67

Moved Axis Parallel Hyper Ellipsoid
PEA 0.94 0.18 297.35 57.34
EMAS 0.53 0.10 82.68 17.58
PEA + Lamarck 1.08 0.43 304.14 94.99
EMAS + Lamarck 0.53 0.09 78.85 15.87
PEA + Baldwin 1.07 0.33 324.78 77.17
EMAS + Baldwin 0.54 0.10 88.75 22.06
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4.1.4. Classical and immunological EMAS

Introduction of the immunological selection, which is in fact a distributed tabu
list, leads to an important question, as to whether this mechanism hampers the ef-
ficiency of the system and whether it has any benefits at all? Indeed, despite first
doubts, after observing the graphs presented in Figure 4.10, it is easy to see that
though the fitness seems to be a little worse in iEMAS than in EMAS, the number
of agents is significantly lower during the whole computation. Therefore, this mech-
anism may produce interesting results, when the complexity of the fitness function
is high and any means of decreasing the number of fitness function evaluation are
crucial. In order to compare EMAS and iEMAS, 50-dimensional Rastrigin problem
was used. The results presented in this section are recalled after Byrski [27].
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Figure 4.10. Fitness and agent count for EMAS and iEMAS

The above observation gets confirmation when looking at Figure 4.11, which
shows the number of lymphocytes and the number of fitness function calls. Of course,
as the number of agents is lower, it directly affects the number of fitness function
calls, as predicted. Moreover, the number of lymphocytes is stable, therefore this
feature of the computation may be easily predictable and adequate efforts may be
made to tune the computing framework and the hardware to support an additional
group of agents.

An interesting observation may be made after analysing the graphs shown in
Figure 4.12. Both diversity measures point out that the diversity in iEMAS is a little
better than in EMAS. This may result from the fact that the population of agents is
affected by the lymphocytes. As similar agents are removed from the system (in fact,
those similar to the ones recently removed), the diversity rises (this may be perceived
as an effect similar to fitness sharing [125]).
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Figure 4.11. Lymphocyte count and number of fitness function calls for EMAS and iEMAS
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Figure 4.12. MOI and MSD diversity for EMAS and iEMAS

4.2. EMAS parameters tuning

Having shown that EMAS approaches are effective in solving selected bench-
mark and real-life problems, it would be interesting to take an insight into the exact
features of the most important mechanism of EMAS, i.e. the distributed selection
based on existence of non-renewable resource. Such experiments could help to un-
derstand it and tune the computation based on this knowledge. The problem is not
trivial, because EMAS, similar to other metaheuristics, utilises many parameters im-
posing on the user the setting dozens of degrees of freedom. The results presented in
this section are recalled after Byrski [27].

4.2.1. Energy-related parameters

Energy-based distributed selection mechanism is an immanent feature of EMAS.
Therefore a detailed examination of its parameters is crucial for better understanding
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of the search process, and for being able to effectively tune them in order to adopt
them to solving particular problems.

Energy exchange rate The most crucial parameter of the distributed selection
mechanism in EMAS is the rate of energy exchange between the meeting agents. The
influence of changing this parameter on the fitness and agent count in the population
is shown in Figures 4.13, 4.14.
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Figure 4.13. Influence of agent exchange energy on EMAS fitness bestFitness(step)
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Figure 4.14. Influence of agent exchange energy on EMAS agent count agentCount(step)

It is easy to see that increasing this parameter makes the final result of computa-
tion better, but due to a logarithmic scale applied, this advantage does not seem to be
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significant. As predicted, this parameter greatly affects the agent count in the system.
The higher the energy exchange rate, the lower the average agent count in the system.

Initial energy level Influence of initial agent energy on the features of the system is
presented in Figures 4.15, 4.16. Initial energy of the agents in the system is supposed
to have a significant influence on the features of the agent population, as it is the main
component of the total energy which is a base for distributed selection mechanism.
In fact, looking at Figure 4.15, the influence seems to be strong and straightforward.
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Figure 4.15. Influence of agent initial energy on EMAS fitness bestFitness(step)
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Figure 4.16. Influence of agent initial energy on EMAS agent count agentCount(step)

The higher initial energy, the greater the number of agents during the compu-
tation. It should be noted that the selection mechanism is stable, as the number of
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agent does not grow indefinitely nor does it fall to zero during the whole computing
process. It is easy to see that changing the initial energy affects indirectly the fitness
in the system (see Fig. 4.16), changing the actual number of the agents in the system
that are capable of exploring and exploiting the search space. Generally speaking, in-
creasing the initial energy helps to reach better results, though this effect is not very
apparent.

Minimal reproduction energy Influence of minimal reproduction energy on the
features of the system is presented in Figures 4.17, 4.18.
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Figure 4.17. Influence of minimum reproduction energy on EMAS agent count
agentCount(step)
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Figure 4.18. Influence of minimum reproduction energy on EMAS fitness
bestFitness(step)
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Minimal reproduction energy of the agents is supposed to have a significant in-
fluence on the features of the agent population, as it directly affects the distributed
selection mechanism by controlling “maturity” of agents capable of reproduction. If
this parameter value is low agents that performed few rendezvous will reproduce,
while for its high value only the agents which live longer may generate offspring. In
fact, looking at Figure 4.18, the influence seems to be strong and straightforward, just
opposite to the case of initial energy.

It is easy to see that the higher the minimal reproduction level, the lower the
number of the agents during the computation, as it is more difficult for them to re-
produce. Again, the selection mechanism is stable, as the number of agent does not
grow indefinitely nor does it fall to zero, during the whole computing process.

The fitness is also affected (see Fig. 4.17) because the number of the agents
varies for different values of the minimal reproduction energy. The system is able to
better and quicker explore the search space for lower levels of this parameter (final
results of the search are better for lower values of minimal reproduction energy, and
the search is quicker as the graph curvature is higher).

4.2.2. Probabilistic decision parameters

Stochastic nature of the systems brings flexibility into the computing, but if
EMAS and related techniques are to be used effectively, a detailed examination of
the most important probabilistic decision parameters is necessary.

Migration probability The existence of migration phenomenon between the sub-
populations should affect positively the value of fitness. It seems to be straightforward
because such techniques as niching and speciation are meant to increase the explor-
ation efficiency of the algorithm. Indeed, it is easy to see that introducing migration
into the system enhances the quality of results (see Fig. 4.19), despite the fact effect
is almost discrete—if the probability is non-zero, the results are significantly better,
however, increasing of this parameter does not produce distinguishable changes in
the fitness value. This may result from the fact that the evolutionary islands were
fully connected; perhaps introducing more sophisticated topology would relax the
influence of this parameter on the overall efficiency of the computation.

Meeting probability This parameter affects the frequency of meetings between the
agents (as the decision whether or not the agent meets another agent is based on the
outcome of probabilistic sampling). The higher the meeting probability is, the more
frequently agents will meet and exchange their energy.

However, this parameter does not influence the number of agents in the popula-
tion (see Fig. 4.20) because the same number of agents simply exchanges the energy
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faster or slower, also in the memetic versions of EMAS. Again the selection mech-
anism is stable, as the number of agent does not grow indefinitely nor does it fall to
zero during the whole computing process.
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Figure 4.19. Influence of migration probability on EMAS fitness bestFitness(step)

 90

 100

 110

 120

 130

 0  500  1000  1500  2000  2500  3000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 4.20. Influence of meeting probability on EMAS agent count agentCount(step)

Increasing the meeting probability makes it possible to reach the desired solu-
tions quicker (see Fig. 4.21), as the energy flow from “worse” agents to “better” ones
is faster, so “better” agents may reproduce quicker. Therefore, the final results of the
search are better for higher values of meeting probability, and the search is quicker as
the graph curvature is higher. Again, changing this parameter, does not greatly affect
memetic modifications of EMAS.
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Figure 4.21. Influence of meeting probability on EMAS fitness bestFitness(step)

Very important information may be obtained when observing diversity shown
in Figures 4.22, 4.23. Increasing the meeting probability decreases diversity. As the
presence of a diverse population is an important thing in the population-based search
[30], one should choose the value of this parameter in such a way that the desired
solution is approached as quickly as planned (as a result of exploitation), and di-
versity is high enough to maintain the exploration. Choosing an appropriate value
of this parameter seems to be crucial to maintain balance between exploration and
exploitation for EMAS and its variations.
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Figure 4.22. Influence of meeting probability on EMAS MSD diversity divMSD(step)
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Figure 4.23. Influence of meeting probability on EMAS MOI diversity divMOI (step)

4.2.3. Immunological parameters

As in Section 4.1.4, immunological variant of EMAS (iEMAS) is an important
weapon of choice when dealing with problems which have a complex fitness function.
Therefore, an examination of selected parameters influencing the immunological se-
lection is necessary.

Penalty threshold This parameter may be described as a quantity of energy taken
from the agent, which turns out to be similar to a lymphocyte during affinity testing.
It is easy to see that changing this parameter significantly influences the number of
agents in the system and yet the fitness remains almost unchanged (see Fig. 4.24a),
which is a very interesting fact.
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Figure 4.24. Influence of penalty threshold on fitness and agent count in iEMAS
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This observation clearly indicates that introducing distributed tabu mechanism
defined in this way does not hamper the search capabilities of the system. Of course,
the higher penalty is, the more agents are removed from the system, therefore, the
relation shown in (Fig. 4.24b) is predictable.

Observation of the diversity measures (see Fig. 4.25) shows that changing the
penalty threshold (at the same time changing the immunological selection pressure)
does not hamper the diversity. Moreover, as reported in Section 4.1.4, quicker re-
moving of “bad” agents makes the system more diverse (in terms of MSD metric).
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Figure 4.25. Influence of penalty threshold on diversity in iEMAS

Penalty threshold has also a predictable influence on the number of lymphocytes
in the system (see Fig. 4.26) closely connected with reducing of the agent population.
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Figure 4.26. Influence of penalty threshold on lymphocyte count
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When the number of agents is lower, the same total sum of energy is distributed
among individuals of a smaller population, therefore, the average value of energy per
agent is higher and agents do not die so often as in the case of a bigger population.
In effect, when the number of individuals in the population is low, also the smaller
number of lymphocytes is generated.

Lymphocyte life length Longer lymphocyte life (see Fig. 4.27) again does not sig-
nificantly worsen the fitness, however certain influence may be observed, as the fit-
ness becomes little better in the case of a shorter lymphocyte life. At the same time, of
course, the agent count decreases with the rise of lymphocyte life as the lymphocytes
may act longer removing the individuals from the population.

 10

 100

 1000

 10000

 0  500  1000  1500  2000  2500  3000  3500  4000

40
30
20
10

(a) bestFitness(step)

 40

 60

 80

 100

 120

 0  500  1000  1500  2000  2500  3000  3500  4000

40
30
20
10

(b) agentCount(step)

Figure 4.27. Influence of lymphocytes’ lifespan on fitness and agent count

At the same time, manipulating the lifespan of lymphocytes does not hamper the
diversity measures, though a little positive influence may be observed in the case of
MSD diversity, when the lymphocyte lifespan is longer (see Fig. 4.28).
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Figure 4.28. Influence of lymphocytes’ life length on diversity
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It is interesting that the length of lymphocyte lifespan does not affect at all the
number of lymphocytes in the system (see Fig. 4.29). It shows that the immunological
selection mechanism is stable and lymphocytes do not tend to overpopulate agents,
though the average number count has a significant diversity, due to full stochastic
nature of the selection mechanism.
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Figure 4.29. Influence of lymphocytes’ life length on lymphocyte count

Percentage of “good” fitness During a negative selection process, lymphocytes
are removed when they are still considered immature, though they match a “good”
agent in the population. This is the case when an immature lymphocyte matches an
agent that has fitness related in some way to the average fitness in the population
(an appropriate percentage is considered). In Figure 4.30 the results of changing this
percentage are shown, along with the MSD diversity of the population.
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Figure 4.30. Influence of “good” fitness percentage on agent count and diversity
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It is easy to see that these two graph sets are related. When the population is
diverse (mostly at the beginning of the computation) the level of “good” fitness is
lower than later when the diversity falls down. So, lymphocytes tend to be removed
more often, and therefore the population of agents is larger. Other important para-
meters such as fitness, MOI diversity and lymphocyte count are quite similar to those
discussed before and remain unchanged in the relation with a given parameter.

Affinity measure In order to measure affinity between lymphocytes and agents,
Mahalanobis distance was used [123]. Lower distance means that the lymphocyte
must match a closer agent before penalising it (and vice versa). Therefore, it is easy
to see that increasing the distance hampers a little the obtained fitness, and of course
decreases the number of agents in the system (see Fig. 4.31).
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Figure 4.31. Influence of similarity threshold on fitness and agent count

At the same time, observation of the lymphocyte count reveals that if the distance
is lower, more lymphocytes are created in the system, as it is easier to remove the
agent. It is connected of course with the similarity measure (this effect has been
already observed before) that removing lymphocytes increases the MSD similarity
measure (see Fig. 4.32).

4.2.4. Parameters tuning recapitulation

The above-mentioned experiments may surely provide a basis for researchers
who are willing to apply the EMAS-like computing to their problems. In order to
make this easier, a summary of the parameters tuning is presented in Table 4.9. Based
on the results presented in this table, in order to appropriately parametrise computa-
tion, one must focus not only on attaining a specified goal (e.g. good fitness) but also
check whether other parameters comply with this goal.
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Figure 4.32. Influence of similarity threshold on lymphocyte count and MSD diversity

Table 4.9. Parameters tuning summary

Increase of the parameter Fitness Agent count MOI MSD Lymphocyte count
Energy exchange rate ↗ ↘ ↗ —
Initial energy level ↗ ↗ — —
Minimal reproduction energy ↘ ↘ ↘ —
Migration probability ↗ — ↗ —
Meeting probability ↗ — ↘ ↘
Penalty level — ↘ — ↗ ↘
Good fitness percentage — ↘ — — —
Lymphocyte life length ↘ ↘ — ↗ —
Similarity distance ↘ ↘ — ↗ ↘

Therefore a desire to increase one parameter of the computation (e.g., fitness),
must be verified with other criteria, for example a need to retain relatively small
population of the agents or high diversity.

Synthetic results as these presented in Table 4.9 will surely help in such activ-
ities, creating a starting point for continuing of the research. That is, after finding
interesting parameters interdependencies, the researcher should refer to one of the
previous sections, describing the details of the experiments, and start to prepare and
test his own system configurations.

4.3. EMAS in real-world problems

Conducting experiments for renowned benchmark functions is always import-
ant, as this is a way to promote a given computing algorithm by making it possible
to compare it to other methods researched by scientists active in the field. However,
research work which concentrates solely on benchmarks lacks an important aspect:
the real-life application. Due to this fact, selected real-life problems were also con-
sidered, and efficiency obtained for EMAS and PEA is presented here.
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4.3.1. Step and flash imprint lithography inverse problem

One of the black-box problems with costly fitness function is an inverse problem
defined as simulation of deformation in step and flash imprint lithography (SFIL).
Here, following the definition of the problem, the results obtained by applying EMAS
and PEA to solve it are presented. For details on experimental configuration refer to
Appendix A. The results presented in this sections are recalled after Wróbel, Torba,
Paszyński and Byrski [197].

Step and flash imprint lithography is an important patterning framework used in
silicon industry [130, 144]. This process consists of the following phases: dispense—
depositing a low viscosity silicon containing, photo-curable etch barrier onto a sub-
strate; imprint—bringing the template into contact with the etch barrier; expose—
exposing the etch barrier to UV in order to cure it; separate—releasing the template.

Photopolymerisation, however, is often accompanied by densification. The
shrinkage of the feature can be modelled by linear elasticity with thermal expansion
coefficient.

Linear elasticity model with thermal expansion coefficient Following [93]
strong and weak formulations for the linear elasticity problem with thermal expan-
sion coefficient are given as follows. The computational domain Ω is defined in the
following way:

Ω = {(x1, x2, x3) : xi ∈ (0, 1)} (4.1)

The bottom of the Ω constitutes the Dirichlet boundary

ΓD = {(x1, x2, x3) : x1, x2 ∈ (0, 1) , x3 = 0} (4.2)

and the remaining parts of the boundary of Ω constitute the Neumann boundary

ΓN = ∂Ω− ΓD (4.3)

Strong formulation. Given gi : ΓD 3 x → gi (x) ∈ R, θ and αkl, find the
displacement vector field ui : Ω̄ 3 x→ ui (x) ∈ R, i = 1, 2, 3, such that

σij,j = 0 in Ω, (4.4)

ui = gi on ΓD, (4.5)

σijnj = 0 on ΓN , (4.6)

where σij is the stress tensor, defined in terms of the generalised Hook’s law

σij = cijkl (εkl + θαkl) , (4.7)
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here cijkl are elastic coefficients (known for a given material), θ is temperature, αkl
are thermal expansion coefficients, and εij = u(i,j) =

ui,j+uj,i
2 is the strain tensor,

where ui,j are displacement gradients.
Weak formulation. The weak formulation is obtained by multiplying (4.4) by

test functions wi ∈ H1
0 (Ω) and integrating by parts over Ω:

−
∫

Ω
wi,jσijdΩ +

∫
Γ
wiσijnjdΩ = 0. (4.8)

Since σij is the symmetric tensor, then wi,jσij = w(i,j)σij and∫
Ω
w(i,j)σijdΩ = 0, (4.9)

which uses the fact that wi = 0 on ΓD and σijnj = 0 on ΓN . Finally, by utilizing
(4.7) the following is obtained∫

Ω
w(i,j)cijklu(k,l)dΩ = −θ

∫
Ω
w(i,j)cijklαkldΩ. (4.10)

Reformulation for the SFIL modelling. For the convenient implementation of
the algorithm, the following equivalent weak formulation is utilised. Find u ∈ V,
such that

a (u,w) = −A (w)∀w ∈ V (4.11)

a (u,w) =

∫
Ω
ε (w)T Dε (u) dΩ (4.12)

A (w) = θ

∫
Ω
ε (w)T DαdΩ, (4.13)

where V = {V ∈
(
H1(Ω)

)3
: trv = 0 on ΓD}, and ΓD is defined as the bottom of

the 3D cube. Here

ε(u) =



u1,1

u2,2

u3,3

u2,3 + u3,2

u1,3 + u3,1

u1,2 + u2,1

 , (4.14)

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

 . (4.15)
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Inverse problem In order to calibrate the direct problem model it is necessary to
find out the model parameters, which involves the Young modulus, Poisson ratio and
thermal expansion coefficient.

Following [130] the Poisson ratio is set to ν = 0.3. It is also assumed that
gi : ΓD 3 x → gi (x) = 0 (the feature is fixed at the bottom, with free boundary
conditions on all other sides), θ = 1 (the thermal expansion coefficient α expresses
the volumetric contraction of the feature when the temperature gradient is equal to 1
Celsius), αij = −αδij , where α = −0.0615 is based on the inverse analysis [142].

The aim of the study is to find out the non-uniform Young modulus of the feature,
resulting in slight lean of the feature, presented in Figure 4.33. It is assumed that there
are 27 Young moduli for each of 27 subparts of the feature, summarised in Figure
4.34. The goal of the inverse analysis is to localise these 27 Young moduli, resulting
in the measured deformation of the feature.

Figure 4.33. Slight lean of the feature

For the direct problem solution the self-adaptive hp finite element method ap-
plication hp3d [143, 46] was used, implementing the linear elasticity with the thermal
expansion coefficient.

Computing results As stated in [197], EMAS and EA were configured to solve an
inverse problem, which consists in identifying 27 parameters (Young’s moduli) that
are required by the solver to perform the Finite Element Method-based simulation.

The number of steps were arbitrary chosen to satisfy the final average fitness
value on level about 1.0. This parameter is different for EMAS and EA for one more
reason: the most important observations (e.g. best fitness) were noted in relation to
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Figure 4.34. The problem considered

the number of fitness computation (instead of subsequent step of computation or
arbitrarily measured time).

Initial values of genes were randomly generated from continuous space defined
by boundaries. They represent 27 Young moduli and with precision are input to hp3d
application, which outputs deformation values.

The output from the solver is the minimum and maximum displacements of the
feature along x, y and z axis. The fitness function is calculated using mean squared
error between output values of these minimum/maximum displacements obtained
from hp3d code and the minimum / maximum displacements obtained from the ex-
periment.

This simulation as it was mentioned is costly. The exact time of one fitness func-
tion call (involving the simulation by the solver) of course depends on the hardware
configuration and also on accuracy of the solver. The higher the accuracy, the longer
the computing time of course (see Tables 4.10 and 4.11). The experiments with the
precision set to 60 were repeated 30 times, experiments with the precision set to
25 were repeated 3 times, and there was one-time approach conducted to compute
the results for the precision 8. Of course, the memetic versions of the systems were
avoided.

The detailed results obtained for a given precision (60, 25, 8) are presented in
Figures 4.35, 4.36, 4.37, respectively.
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Figure 4.35. EMAS produces better results faster than EA maintaining stable population
and diversity (precision 60)
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Figure 4.36. EMAS produces better results faster than EA maintaining stable population
and diversity (precision 25)
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Figure 4.37. EMAS produces better results faster than EA maintaining stable population
and diversity (precision 8)
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Table 4.10. Execution time (in minutes) of fitness single function call
using FEM-based SFIL solver on different processors

Precision Intel i7 2.2GHz AMD Opteron 1220 2.8GHz
60 0:0.533 0:1.053
59-25 0:53.234 2:37.105
24-8 2:31.210 7:41.221
7-5 4:11.729 12:49.887
4-1 6:26.175 19:7.572

Table 4.11. Execution time of experiments on AMD Opteron 1220 2.8GHz

Precision Repetitions EMAS EA
60 30 17h30m 26h20m
25 3 10d22h 16d8h
8 1 10d16h 16d

Experiments were repeated to ensure the independence of the initial values. The
numbers of experiments repetitions were chosen to finish them within a reasonable
time as shown in Table 4.11, therefore the most reliable results from the statistical
point of view are shown for the precision of 60%.

All these experiments revealed that EMAS produced better results much earlier
than EA (see Figs. 4.35, 4.36, 4.37). These differences were visualised in Figs. 4.37b,
4.36b, 4.35b. Only for the precision 25%, EA reached the same fitness level as
EMAS, but not until the 800th fitness function call was executed.

The final solution found on acceptable precision (8%) has the fitness value of
0.876222 and 27 Young moduli are (see Fig. 4.38): 1.9 · 1009, 5.1 · 1008, 1.6 · 1009,
3.4 · 1008, 1.4 · 1008, 5.1 · 1008, 1.2 · 1008, 1.1 · 1009, 1.1 · 1009, 1.2 · 1009, 4.9 · 1008,
6.5 · 1008, 1.7 · 1009, 1.4 · 1009, 3.7 · 1007, 5.2 · 1008, 9.1 · 1008, 3.8 · 1008, 6.6 · 1007,
1.3 · 1009, 4.8 · 1008, 8.7 · 1008, 1.8 · 1009, 2.9 · 1008, 1.0 · 1009, 7.4 · 1008, 2.4 · 1008.
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Figure 4.38. Visualisation of found solution (fitness 0.876222 with precision 8)
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The presented graphs depicting the difference between computing of certain fit-
ness values and number of EA computation of the same fitness value as EMAS,
clearly show that EMAS tends to produce better results quicker, though they may
become similar to the ones produced by EA later. Note, that because of high cost of
fitness function calls, this outcome is a significant advantage of EMAS.

Agent count measurement showed that the population is stable similarly to other
EMAS-related experiments. A similar conclusion may be drawn when observing the
diversity measures—they all are quite high at the beginning of the computation and
they fall in the end.

4.3.2. Advisory strategy parameters optimisation

Decision support, which is mostly related to artificial intelligence, constitutes a
broad range of different techniques aimed at helping the human (decision-maker) in
different activities, such as choosing the most feasible strategy for investing in fin-
ancial instruments, performing a diagnosis of a faulty system or predicting a product
revenue in the market [159].

Sometimes, valuable advice may be given using a predefined model that will help
to simulate or solve a certain task. Such a model may become a source of knowledge,
straightforwardly supporting the user in performing certain decision-making tasks. It
may be proposed, e.g. in the form of a set of equations constructed by an expert, but
it can also be constructed in an automated way [22].

As an example, the process of optimisation of neural network architecture may
be mentioned (as neural networks may in a natural way become a part of decision
support system and serve as a means of solving approximation problems, e.g. classi-
fication and prediction, as well as control problems, i.e. management of some process
or device). Even though the use of neural networks replaces the necessity to solve the
problem in a deterministic way, one still needs to define network parameters such as
its structure, learning coefficients etc., which should be suitable for a given problem.
This usually requires carrying out numerous experiments, so it is a time consuming
job and can be performed only by specialists [83].

At the same time, techniques of evolutionary computation were successfully
used for solving difficult search and optimisation problems. Moreover, they may be
useful in supporting the search for optimal parameters of a certain model (e.g. op-
timal neural network architecture). Although the classical evolutionary algorithms
can easily be applied to the search for optimal parameters of a certain model, addi-
tional advantages may be expressed by applying more complex search methods such
as agent-based computing.

In this section, an application of EMAS and its memetic version to the optimisa-
tion of parameters of the advisory strategy is presented. The case study is based on
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an original Sudoku solving strategy. Sudoku solving belongs to a NP-complete class
of problems, therefore, the problem stated in this paper can be perceived as a good
benchmark for the agent-based metaheuristics. For details of experimental configur-
ation refer to Appendix A.

The results presented in this sections are recalled after Polnik, Kumięga and
Byrski [146].

Sudoku advisory strategies Sudoku is a number-placement puzzle known world-
wide, in which the user is given a task to fill a 9 × 9 lattice with digits so that each
column, row and each of nine 3× 3 sub-lattices that compose the lattice contains all
of the digits from 1 to 9 (see Fig. 4.39). A partially completed lattice is provided,
which typically has an unique solution [168, 72]. Sudoku is a NP-complete con-
straint satisfaction problem. The proof can be found in [59]. The fact of Sudoku’s
NP-completeness makes solvers using solely brute-force techniques infeasible.

In this paragraph, dedicated advisory strategies for Sudoku problem are dis-
cussed. They should not be treated as approaches to solving this puzzle directly, rather
than a means of suggesting a strategy that may be used by the human. Open Source
Sudoku solvers [87] implement various strategies, formulated by Sudoku community
to detect incorrect movements in advance and reduce the number of backtracks [174].
These strategies make it possible either to exclude some movement possibilities or
make a deterministic move to satisfy Sudoku’s constraints in a specific board setting.

Paragraph below provides a summary of a few popular strategies described in
[87, 172].
• Naked Pairs – let A and B be the only candidate movements for 2 empty fields

in a row, column or 3 × 3 block. No other empty field within the same unit can
be filled with A or B.

• X-Wing – let A be a candidate movement in 4 empty fields that are located in the
vertices of a rectangle. Any other empty field that share a row or column with
the rectangle vertices cannot be filled with A.

• Sword Fish – let A be a candidate movement in empty fields that share 3 different
rows or columns. Any other empty field in each of the rows or columns cannot
be filled with A.
The detailed overview of Sudoku advisory strategies is available in [173]. The

aforementioned strategies can also be used to assess the hardness of Sudoku boards
[174]. Different approach to solve and estimate Sudoku boards using continuous-time
dynamical system and Richter type scale respectively is described in [59].

The proposed strategy An original strategy of solving Sudoku puzzle based on
the way in which human usually resolves this puzzle [168] is defined as follows.
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7 9 1 58 58 6 2 4 3

2 8 5 4 1 3 7 6 9
6 3 4 9 27 27 1 5 8

5 2 9 6 3 1 8 7 4

4 1 8 257 2579 257 59 3 6

3 6 7 58 4589 58 59 1 2

1 4 3 25 25 9 6 8 7

8 7 2 1 6 4 3 9 5

9 5 6 3 78 78 4 2 1

7 9 1 58 58 6 2 4 3

2 8 5 4 1 3 7 6 9

6 3 4 9 27 27 1 5 8

5 2 9 6 3 1 8 7 4

4 1 8 257 2579 257 59 3 6

3 6 7 58 4589 58 59 1 2

1 4 3 25 25 9 6 8 7

8 7 2 1 6 4 3 9 5

9 5 6 3 78 78 4 2 1

(a) Top image shows a
board state with two

possible deterministic
moves; both

individuals perform
these moves, as shown

in the bottom image

7 9 1 5 8 6 2 4 3

2 8 5 4 1 3 7 6 9

6 3 4 9 27 27 1 5 8

5 2 9 6 3 1 8 7 4

4 1 8 27 2579 257 59 3 6

3 6 7 8 4589 58 59 1 2

1 4 3 2 25 9 6 8 7

8 7 2 1 6 4 3 9 5

9 5 6 3 78 78 4 2 1

7 9 1 58 58 6 2 4 3

2 8 5 4 1 3 7 6 9

6 3 4 9 7 2 1 5 8

5 2 9 6 3 1 8 7 4

4 1 8 257 259 257 59 3 6

3 6 7 58 4589 58 59 1 2

1 4 3 25 25 9 6 8 7

8 7 2 1 6 4 3 9 5

9 5 6 3 8 78 4 2 1

(b) As no more
deterministic moves

were possible,
individuals had to
perform a guess

according to their
genotype; A’s choice is

shown in top image,
B’s in the bottom one

7 9 1 5 8 6 2 4 3

2 8 5 4 1 3 7 6 9

6 3 4 9 2 7 1 5 8

5 2 9 6 3 1 8 7 4

4 1 8 7 9 2 5 3 6

3 6 7 8 4 5 9 1 2

1 4 3 2 5 9 6 8 7

8 7 2 1 6 4 3 9 5

9 5 6 3 7 8 4 2 1

7 9 1 58 5 6 2 4 3

2 8 5 4 1 3 7 6 9

6 3 4 9 7 2 1 5 8

5 2 9 6 3 1 8 7 4

4 1 8 27 29 5 9 3 6

3 6 7 49 8 59 1 2

1 4 3 25 25 9 6 8 7

8 7 2 1 6 4 3 9 5

9 5 6 3 8 7 4 2 1

(c) After a series of
deterministic moves
following a guess A
was able to fill the
board; B’s move

proved to be wrong and
it had to backtrack

Figure 4.39. Example illustrating a portion of board solving process with moves performed
by two different individuals, A and B; small numbers represent S(p) sets

The strategy is supposed to point out the subsequent field of the lattice to fill it out
with one of the feasible digits following that no other movement enforced by Sudoku
constraints is known. Therefore, for each field of the lattice, denoted here by (x, y),
for all empty fields located in the row x and column y, and all feasible digits i, the
value of the following weight function is computed:

W (x, y, i) = a1 ∗ Fill33 (x, y) + a2 ∗ FillRow(x)

+a3 ∗ FillCol(y) + a4 ∗Occ(i), (4.16)

where:
• Fill33 (x, y) is the function computing the filling level of the 3× 3 block where

(x, y) field is located.

• FillRow(x) computes the value describing the filling level of the row x.
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• FillCol(y) computes the value describing the filling level of the column y.

• Occ(i) computes the count of the fields with the number i.

Then the move consisting in putting the digit i into the field (x, y) is made for
the field bearing the extremal value of the function W (x, y, i) (minimum or max-
imum, depending on the exact definition of the Fill33 , FillRow , FillCol and Occ
functions).

The problem of optimisation of the proposed Sudoku advisory strategy may be
treated as the parametric optimisation [151] (maximisation in this case) of the func-
tion W (x, y, i) depending on the parameters ak ∈ [−3, 3], k ∈ [1, 4], used for ad-
vising on subsequent moves in Sudoku solving. This may be accomplished with an
evolutionary approach. For this purpose, the pattern sought is encoded as a following
weight vector:

[a1, a2, a3, a4], ak ∈ [−3, 3], k ∈ [1, 4]

and the fitness function is defined as a multiplicative inverse of a number of non-
feasible decision undertaken by the individual in the course of solving a series of
lattices according to the following procedure:

1. Make all deterministic moves:

• A deterministic move is the one that complies with the rules of Sudoku (in
each column, row and block at most one number of a certain value can be
located, without backtracking or contradictions).

• For each field p of the Sudoku board a set of numbers S(p) is determined,
which can be filled into this field without violating the Sudoku rules.

• If there exists p for which S(p) contains only one symbol s, then it is re-
moved from all other S(·) located in the same 3× 3 block, column or row.

• If in the course of reducing S(·) sets, a new set of cardinality 1 is obtained,
the procedure is repeated for this new set.

• The algorithm is finished when all sets S(·) contain only one element or
during the actualisation of the S(·), no one-element set was obtained.

2. If the board is not solved, make a move according to the current strategy, other-
wise finish the move according to the strategy and increase the counter of non-
feasible decisions for the evaluated solution.

3. If the board is not solved, go to 1.
Several possible decisions undertaken during this procedure are presented and

commented in Figure 4.39.
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Computing results The detailed results obtained in the course of the experiments
are presented in Figures 4.40, 4.41, including fitness, diversity measures computed
for EMAS and PEA and agent count for EMAS.

It is easy to see that for a given problem, EMAS obtained better or similar results
while maintaining stable population of agents, except for experiments focused on
Lamarckian versions of both systems where PEA prevails.

At the same time diversity measures clearly indicate that diversity is significantly
better in EMAS, at least at the beginning of computation, so the exploration phase is
apparently longer.

Relatively high dispersion of the results obtained calls for a detailed analysis
of the problem stated, and possibly to employ more sophisticated methods. For ex-
ample, Krzywicki in [116] has already tried enhancing EMAS with niching tech-
niques, so this approach may be utilised in future research, enhancing both classical
and memetic versions of the examined systems, in order to reach and clearly report
more than one extremum of the optimised problem.

Apart from visual assessment of the fitness results, an insight into the actual
solutions is also necessary. In Table 4.12 the fitness value in the last (150th) step of
the computation was presented. It should be noted that the best result was reached by
EMAS without modifications. The next one was apparently EMAS with Baldwinian
memetics. However high dispersion of this results points out that it should be disqual-
ified. In the case of Lamarckian memetics, the final result obtained by EMAS seems
to be worse than in the case of PEA.

Table 4.12. Final results obtained by the researched systems

System Fitness Standard deviation
PEA 75.6 35.51
PEA + Baldwin 93.6 68.91
PEA + Lamarck 77.4 13.82
EMAS 37.2 0.4
EMAS + Baldwin 47 59.39
EMAS + Lamarck 80.4 33.83

To sum up, of optimisation of game advisory strategy considered in the case of
Sudoku solving turned out to be an interesting black-box problem that is apparently
well-suited for testing such complex computing systems as EMAS and its modifica-
tions. Computing with classical PEA turned out to be worse than the proposed agent-
based metaheuristics, besides one test case (Lamarckian memetics).
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Figure 4.40. Fitness and agent count obtained for all tested systems
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Figure 4.41. Diversity obtained for all tested systems
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4.4. Goals attained in experimental verification

In this chapter, experimental analysis of different aspects of agent-based meta-
heuristics was performed. Having evaluated the systems of interest, which use se-
lected classical multidimensional benchmark functions (versus parallel evolutionary
algorithm), attention was focused on a comparison between memetic versions of
EMAS and similarly configured PEA. Both series of experiments showed that EMAS
outperforms its competitor by yielding better results for the problems. Moreover, it
utilises significantly lower number of individuals.

The immunological selection mechanism was also tested, and the outcome of
a comparison between EMAS and iEMAS resulted in the observation that though
iEMAS produces results with a little worse fitness, the number of agents in the popu-
lation is significantly lower, making this a good tool for solving problems with costly
fitness functions.

Next, an evaluation of the influence of different parameters of EMAS and
iEMAS was made. The results allow the formulation of concise guidelines on the
tuning of the computation based on EMAS or iEMAS and applying them to certain
problems.

Finally, two real-world problems: Sudoku strategy parameters optimisation and
step and flash imprint lithography inverse problem were considered. Again, EMAS
turned out to produce better results than PEA for both problems.



Summary

Solving difficult search and optimisation problems (e.g. “black-box”) requires
non-deterministic approaches, in particular metaheuristics. It may be said that these
methods trade-off precision, quality, accuracy and execution time in favour of com-
putational effort. Such methods usually referred to as the methods of last resort are
necessary for dealing with difficult problems.

Following no free lunch theorem mentioned earlier, it turns out that looking for
novel metaheuristics for particular problems will always be necessary. Therefore,
the existing metaheuristics are proposed to be enhanced with agency, constituting
EMAS (proposed by Cetnarowicz) and its modifications (memetic and immuno-
logical), which yielded original results presented in this monograph. Moreover, it
should be noted that developing novel computing methods calls for the development
of a detailed formal model that will ease the understanding of the method, and provide
a base for further analytical deliberations, helpful in getting a deeper insight into the
features of the system. Accurate testing of the proposed metaheuristics is also neces-
sary, in particular tuning the system parameters may be fruitful for further application
of this metaheuristics to other problems.

This monograph starts with a state-of-the-art review of difficult search problems
and existing methods of dealing with them, in particular recalling the ones that serve
as an inspiration for metaheuristics discussed later. After discussing popular evolu-
tionary and non-evolutionary methods, highlighting the hybrid ones, the architectures
of agent-based computing systems is outlined. Deliberations on existing needs in the
domain of theory and practice finish the first part of the work, giving a sound base
for further discussion.

EMAS is treated as a starting point for further hybridisation and extensions, so
in this way memetic EMAS hybrids and immunological EMAS are discussed, which
have already proved to be general-purpose search algorithms.

A general Markov-chain based stochastic model related to the agent search and
optimisation, inspired by Michael Vose’s SGA model is constructed. The description
begins with giving data structures and management strategies, which results in defin-
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ing the space of states and the framework for describing stochastic agents’ actions.
Later, the stationary Markov chain for memetic EMAS is defined, including the defin-
ition of probabilistic transition function and Markov kernels for sample actions. Then
an analysis of dependencies between the actions is performed and notions of local and
global actions are given. The same structure is repeated for defining iEMAS.

Theoretical results obtained in this research are helpful in studying important
features of stochastic global optimisation metaheuristics, conforming EMAS archi-
tecture and implemented as a concurrent system in a distributed computing environ-
ment. The proper synchronisation among agents respecting the classification of the
agent’s actions ensures safeness. Moreover, the safe, coarse-grained parallel compu-
tation and its effective, suboptimal scheduling in a distributed computer environment
(computer cluster) may be obtained. The proved strong ergodicity of the finite state
Markov chain modelling the metaheuristics causes that it can reach an arbitrary state
(arbitrary population) in the finite number of iteration with the probability one which
implies the asymptotic stochastic guarantee of success. This condition mainly im-
poses liveness of the metaheuristic. Similar conclusions may be drawn from the er-
godic conjecture prepared for iEMAS and an outline of the proof. This shows that the
proposed way of modelling is extensible and applicable to more similar metaheurist-
ics.

The experimental results were conducted for EMAS and PEA, their memetic
versions and iEMAS. General outcome of these experiments is that EMAS tends to
be better at solving difficult (e.g. multi-dimensional) problems than a parallel evol-
utionary algorithm (the experiments were prepared in such a way that both these
systems could be compared—the selection, population structure, variation operators
etc.). Memetic versions of EMAS and PEA were also examined and the results show
that effects of Lamarckian memetics makes EMAS better in almost all tested prob-
lems, while Baldwinian memetics proved an effective method only in several cases.
As far as efficiency of the examined systems is concerned, EMAS turned out to be
much more effective in terms of fitness function calls. This makes these systems a
promising weapon in dealing with problems with costly fitness function.

The experiments were devoted to solving not only classical benchmark prob-
lems, but also several tasks that may be perceived as real-life. Namely, solving inverse
problem of step and flash imprint lithography (this was one of the cases when the fit-
ness function was costly), and a parametric optimisation of Sudoku solving strategies
were considered. EMAS prevailed in all these problems as a more effective search
technique. The final series of experiments considered examination of the influence of
different parameters of EMAS and its modifications on its efficiency.

To sum up, the original results presented in this monograph should be divided
into two aspects: formal analysis and experimental research.
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• Formal analysis:

– Structure and behaviour models for EMAS (Section 2.2.2) and iEMAS (Sec-
tion 2.3.2).

– Synchronisation mechanism for EMAS (Section 2.2.4) and iEMAS 2.3.3).
– Model of dynamics for EMAS (Section 3.1.1) and iEMAS (Section 3.2.1).
– Detailed definition of EMAS actions (Section 2.2.3).
– Formulation of ergodic theorems for EMAS (Section 3.1.2) and iEMAS

(Section 3.2.2).
– Formal proof of ergodicity for EMAS (Section 3.1.2).
– Formulation of ergodic conjecture for iEMAS (Section 3.2.2).
– Estimation of lower bounds for probabilities and upper bounds for the num-

ber of steps for particular stages in EMAS ergodicity proof (Appendix B).

• Experimental research:

– Comparing EMAS and PEA (classical and memetic versions) efficiency for
selected benchmark problems (Section 4.1).

– Comparing selected additional parameters such as computing step execution
time, diversity, number of fitness function calls per step etc. (Section 4.1).

– Comparing EMAS and iEMAS efficiency (Section 4.1).
– Tuning of energetic and probabilistic decision parameters for EMAS (Sec-

tion 4.2).
– Tuning of iEMAS parameters (Section 4.2).
– EMAS and PEA efficiency for selected real-world problems such as step and

flash imprint lithography inverse problem and advisory strategy parameters
optimisation (Section 4.3).

In the future, the stochastic models presented in this monograph are planned to
be further extended to cover other algorithms (e.g. parallel evolutionary algorithm).
Conducting the full formal proof for iEMAS ergodicity is also envisaged. Regarding
the experimental verification of the systems, other difficult problems are planned to
be approached with EMAS and related search methods. For example, combinatorial
optimisation or dynamic optimisation will be tackled.

Both practical and theoretical results of this monograph are believed to be an
important starting point for adaptation and appropriate configuration of agent-based
metaheuristics for solving other problems, which have not been considered here, and
for further development of stochastic models for complex systems.



A. Experimental configuration details

Classical EMAS and PEA
Common configuration of the algorithms
• Representation: real-valued.
• Mutation: normal distribution-based modification of one randomly chosen gene.
• Crossover: single-point.
• Migration topology: 3 fully connected islands.
• Migration probability: 0.01 per agent/individual (each one migrates

independently—possibly to different islands).

EMAS configuration
• Initial energy: 100 units received by the agents in the beginning of their lives.
• Evaluation energy win/loose: 20 units passed from the looser to the winner.
• Minimal reproduction energy: 90 units required to reproduce.
• Death energy level: 0, such agents should be removed from the system.
• Boundary condition for the intra-island lattice: fixed, the agents cannot cross the

borders.
• Intra-island neighbourhood: Moore’s, each agent’s neighbourhood consists of 8

surrounding cells.
• Size of 2-dimensional lattice as an environment: 10x10.
• Stop condition: 100000 steps of experiment.
• Benchmark problem: Rastrigin function [49].
• Problem size: 100 dimensions.
• Population size configurations:

– 25 individuals on 1 island,
– 25 individuals on 3 islands,
– 40 individuals on 1 island,
– 40 individuals on 3 islands.
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EMAS variants and parameters tuning

The configuration of the tested systems is presented as follows.
• Common parameters: normal distribution-based mutation of one randomly

chosen gene, single-point crossover, the descendant gets parts of its parents gen-
otype after dividing them in one randomly chosen point, 30 individuals located
on each island, all experiments were repeated 30 times and standard deviation (or
other statistical measures, such as median and appropriate quartiles for box-and-
whiskers plots) was computed; allopatric speciation (island model), 3 fully con-
nected islands, 3000 steps of experiment, genotype of length 50, agent/individual
migration probability 0.01.

• PEA-only parameters: mating pool size equals to the number of individuals, in-
dividuals migrate independently (to different islands).

• EMAS-only parameters: initial energy: 100, received by the agents in the be-
ginning of their lives, minimal reproduction energy: 90, required to reproduce,
evaluation energy win/loose: 40/−40, passed from the looser to the winner, death
energy level: 0, used to decide which agent should be removed from the system,
boundary condition for the intra-island lattice: fixed, the agents cannot cross the
borders, intra-island neighbourhood: Moore’s, each agent’s neighbourhood con-
sists of 8 surrounding cells, size of 2-dimensional lattice as an environment:
10 × 10, all agents that decided to emigrate from one island, will immigrate to
another island together (the same for all of them).

iEMAS

The following parameters were chosen for iEMAS:
• Energy taken by a lymphocyte from similar agent: 30

• Good fitness factor: 0.97 (percentage of the agent fitness related to average fit-
ness in the population, as minimisation is considered, if fitness is smaller than
average fitness, it is considered as “good”).

• Similarity measure: Mahalanobis distance [123].

• Similarity threshold: 7.3, if similarity is smaller than this the lymphocyte is con-
sidered to be similar to the tested agent.

• Immaturity duration for lymphocyte: 10.

• Maturity duration for lymphocyte: 20.

• Lymphocytes cannot migrate between the islands.
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Step and flash imprint lithography

Common parameters:
• Mutation: uniform distribution modification of one randomly chosen gene.

• Crossover: single-point, the descendant gets parts of its parents genotype after
dividing them in one randomly chosen point.

• Population size: 15.

• As a platform technical feature, global cache for computing fitness values to
speed up calculations.
EA parameters:
• number of steps: 1000,

• mating pool size equals to number of individuals,
EMAS parameters:
• number of steps: 10000,

• initial energy: 100, received by the agents in the beginning of their lives,

• minimal reproduction energy: 90, required to reproduce,

• evaluation energy win/loose: 20/-20, passed from the looser to the winner,

• death energy level: 0, used to decide which agent should be removed from the
system.

• intra-island neighbourhood: Moore’s, each agent’s neighbourhood consists of 8
surrounding cells.

• size of 2-dimensional lattice as an environment: 10x10.

Sudoku solving strategy parameters optimisation

The configuration of the tested systems is presented as follows.
• Common parameters: normal distribution-based mutation of one randomly

chosen gene, single-point crossover, the descendant gets parts of its parents gen-
otype after dividing them in one randomly chosen point, 15 individuals located
on each island, all experiments were repeated 30 times and standard deviation (or
other statistical measures, such as median and appropriate quartiles for box-and-
whiskers plots) was computed; allopatric speciation (island model), 3 fully con-
nected islands, 150 steps of experiment, genotype of length 4, agent/individual
migration probability 0.01.

• PEA-only parameters: mating pool size: 8, individuals migrate independently (to
different islands).
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• EMAS-only parameters: initial energy: 100, received by the agents in the be-
ginning of their lives, minimal reproduction energy: 90, required to reproduce,
evaluation energy win/loose: 40/−40, passed from the looser to the winner, death
energy level: 0, used to decide which agent should be removed from the system,
boundary condition for the intra-island lattice: fixed, the agents cannot cross the
borders, intra-island neighbourhood: Moore’s, each agent’s neighbourhood con-
sists of 8 surrounding cells, size of 2-dimensional lattice as an environment:
10 × 10, all agents that decided to emigrate from one island, will immigrate to
another island together (the same for all of them).



B. Technical details of EMAS ergodicity proof

The detailed estimation of lower bound for probabilities and upper bound for
number of steps for the stages of proof of Theorem 3.1.1 is preceded by a series of
useful technical lemmas.

Lemma B.0.1 ([25, Lemma B.1]). Given the assumptions of Theorem 3.1.1, there
exists a positive constant 0 < ζ0 6 1

2 such that ζ0 6 ζgl(x) and ζ0 6 ζ loc(x) for all
x ∈ X .

Proof. According to Formula (3.2)

ζ loc(x) =
∑
i∈Loc

locsel(x)(i) · ξi(x)

where
ξi(x) =

∑
gen∈U

∑
n∈Pi

agseli(x)(gen, n) · ω(x, gen)(Actloc)

See Eq. (3.1). Because Actloc 6= ∅ and there always exists at least one agent (see
Remark 3.1.2) we have

ξi(x) > ιagsel · ιω

for all x ∈ X and i = 1, . . . , s. Finally, because at least one location contains an
agent (see Remark 3.1.2 again) we may evaluate

ζ loc(x) > ιlocsel · ιagsel · ιω = ζ0

for all x ∈ X . Replacing Actloc by Actgl (Actgl 6= ∅) we similarly obtain

ζgl(x) > ιlocsel · ιagsel · ιω = ζ0

for all x ∈ X . The constant ζ0 is strictly positive as it is the product of strictly positive
numbers. Moreover 2ζ0 6 ζgl(x) + ζ loc(x) = 1 for all x ∈ X , so ζ0 6 1

2 .
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Lemma B.0.2 ([25, Lemma B.2]). ∀gen ∈ U, l, l′ ∈ Loc; l 6= l′, n ∈ Pl, n
′ ∈

Pl′ , x, x
′ ∈ X so that x(l, gen, n) > emigr, x(l′, gen, n′) = 0,

x′(l′, gen, n′) = x(l, gen, n) we have

%gen,nmigr (x)(x′) ≥ ιmigr =
1

(s− 1) maxi∈Loc{qi}
.

In other words, assuming the current state x, and the particular agent aggen,n ready
to migrate from this state, all states x′ containing this agent located in other locations
than in x are reachable with probability greater than or equal to ιmigr.

Proof. It follows straightforwardly from Eq. (2.29) describing the migr action’s ker-
nel %gen,nmigr .

Lemma B.0.3 ([25, Lemma B.3]). If ∃ιmut > 0; mut(gen)(gen′) >
ιmut ∀gen, gen′ ∈ U then ∃ ιclo > 0 such that %gen,nclo (x)(x′) > ιclo for each quad-
ruple (gen, n, x, x′), gen ∈ U, x, x′ ∈ X and for a certain location l ∈ Loc
satisfying:

• x(l, gen, n) > erepr, n ∈ Pl,

• ∃ gen′ ∈ U, n′ ∈ Pl;
x′(l, gen′, n′) = ∆e, x(l, gen′, n′) = 0,

•
∑

a∈U,b∈Pl [x(l, a, b) > 0] < ql.

Roughly speaking, assuming the current state x, and the particular agent aggen,n
ready for cloning in this state, all states x′ containing an additional agent (cloned by
aggen,n) are reachable with probability greater than or equal to ιclo independently
upon x and x′. Of course, the set of possible x′ may be empty if the location of the
cloning agent is full in the state x.

Proof. First of all, we may observe that if x satisfies the assumptions of the lemma,
then the decision is positively evaluated, i.e. δgen,nclo (x)(1) = 1. On the other hand, the
third assumption implies that there is at least one inactive agent in the system. Let us
denote the signature of this agent by (gen′, n′). If it was activated in the i-th location
by the cloning operation, then the next state would satisfy x′(l, gen′, n′) = ∆e with
probability 1. Then according to Eq. (2.25) the set FCl,gen′ would be non-empty.
Furthermore, taking into account (2.33), (2.32) we obtain

%gen,nclo (x)(x′) = ϑgen,nclo (x)(x′) >
ιmut

maxi∈Loc{qi} − 1
= ιclo > 0.
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Lemma B.0.4 ([25, Lemma B.4]). If ∃ ιcmp > 0; cmp(gen, gen′) >
ιcmp ∀gen, gen′ ∈ U then ∃ ιget > 0 such that %gen,nget (x)(x′) > ιget
and %gen,nget (x)(x′′) > ιget for each tuple (gen, n, x, x′, x′′), gen ∈ U, n ∈
Pl, x, x

′, x′′ ∈ X and for a certain location l ∈ Loc satisfying:

• x(l, gen, n) > 0, n ∈ Pl,

• ∃ gen′ ∈ U, n′ ∈ Pl;
(gen, n) 6= (gen′, n′), x(l, gen′, n′) > 0,

• x′(l, gen′, n′) = x(l, gen′, n′) + ∆e,
x′(l, gen, n) = x(l, gen, n)−∆e,
x′′(l, gen′, n′) = x(l, gen′, n′)−∆e,
x′′(l, gen, n) = x(l, gen, n) + ∆e,
x′′(l, j, k) = x′(l, j, k) = x(l, j, k),
∀ j 6= gen, j 6= gen′, k 6= n, k 6= n′.

In other words, assuming the current state x, and a pair of agents aggen,n, aggen′,n′
active in this state in the same location, both states x′, x′′ in which the agent aggen,n
takes or gives the quantum ∆e of energy to/from its neighbor aggen′,n′ are reachable
with probability greater than or equal to ιget. This probability does not depend on
the state x or pair of the neighboring agents aggen,n, aggen′,n′ .

Proof. First of all, we may observe that if x satisfies the conditions assumed in
the lemma then the decision is positively evaluated δgen,nget (x)(1) = 1, because
NBAGl,gen,n (see Eq. (2.17)) is non-empty. Then according to Eqs. (2.18)–(2.20)

%gen,nget (x)(x′) = ϑgen,nget (x)(x′) >
ιcmp

(maxi∈Loc{qi})− 1
= ιget > 0.

The same reasoning leads to %gen,nget (x)(x′′) > ιget.

Lemma B.0.5 ([25, Lemma B.5]). Let Ai be an event (e.g. denoting that certain
agents perform certain actions) in the i-th step. Then A1 ∩ . . . ∩Ak is an event con-
sisting of events A1, . . . , Ak taking place consecutively in subsequent steps 1, . . . , k.
If P (A1) > λ1 > 0 and the conditional probabilities P (Ai|

⋂i−1
j=1Aj) are bounded

from below by λi > 0 for i = 2, . . . , k, then

P

(
k⋂
i=1

Ai

)
>

k∏
i=1

λi > 0. (B.1)

Proof. Considering the sequence of (possibly dependent) events A1, . . . , Ak and
starting from the well-known conditional probability formula P (A1∩A2) = P (A1) ·
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P (A2|A1), the following equation

P

(
k⋂
i=1

Ai

)
= P (A1) ·

k∏
i=2

P

Ai
∣∣∣∣∣∣
i−1⋂
j=1

Aj

 (B.2)

may be proved inductively, which is enough to prove the lemma.

Proof of Theorem 3.1.1 – detailed estimations. It will suffice to show that the pas-
sage between two arbitrary EMAS states (xb, xe ∈ X) may be performed in a finite
number of steps with a positive probability. It was already shown (see Outline od
the proof of Theorem 3.1.1, Section 3.1.2) that the passage mentioned above may be
performed by the sequence of stages 1–5 described there and illustrated in Fig. 3.1.
Now it is enough to estimate the upper bounds for the number of steps required to
perform each of these stages and then the lower bound of the probability of series of
actions executed in these steps.

Lemma B.0.6 ([25, Lemma B.6]). Given the assumptions of Theorem 3.1.1, Stage 0
requires at most st0 = m − 1 steps in parallel taken with probability greater than
or equal to pr0 > 0, where m stands for the number of possible energy values that
might be possessed by the agent (see Section 2.2.2).

Proof. In each parallel step performed during this stage we divide the set of locations
into three distinct sets:

• Loc∅: empty locations (containing no active agents) – there is no activity there.

• Locget: locations containing the maximal number of agents (qi): one of the exist-
ing agents aggeni,ni is selected and it performs a sequence of get actions in order
to remove one of its neighbours aggen′i,n′i . Both agents are fixed during the Stage
0. After removing its neighbour, the agent begins to perform the global action
migr and fails (rejected to do it by MA), until the end of the Stage 0.

• Locmigr = Loc \ (Loc∅ ∪ Locget): other locations in which one of the existing
agents performs the global actionmigr and fails (rejected byMA), until the end
of the Stage 0.
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The probability of performing a single step of the described sequence is given
by:

ζ loc(z)
∏

i∈Locget

(
agseli(z)(geni, ni) · ω(geni, z)(get)·

δgeni,niget (z)(1) · %geni,niget (z′i)(z
′′
i )
)∏

i∈Locmigr

(
agseli(z)(geni, ni) · ω(geni, z)(migr)

)
> ζ0

∏
i∈Locget

(ιagsel · ιω · ιget) ·
∏

i∈Locmigr

(ιagsel · ιω)

> ζ0 (ιagsel · ιω · ιget)s (B.3)

where:
• z is the current state of the system. It is set to xb in the beginning of Stage 0 and

the final state of this stage z equals to x01,

• z′i, z′′i are intermediate states that make it possible to express the parallel exe-
cution of the action get in all locations in Locget. The state z′′i is a result of
execution of the action get in the i-th location, starting from the state z′i. The
order of locations from Locget in Eq. (B.3) is arbitrary, because the get action is
local (see Observation 2.2.3). z′i = z for the first location from Locget, z′j = z′′i
where j is a location next to i in Eq. (B.3). The state z becomes z′′i at the end of
the sequence of intermediate steps.

It is easy to see that the estimation given in Eq. (B.3) is uniform for all steps in Stage
0. The maximal number of steps is bounded from above by st0 = m − 1 because it
is maximum possible energy for an agent.

Assume At is an event that consists in performing the t-th step described above,
according to Lemma B.0.5, the probability of the whole sequence can be bounded
from below by:

pr0 = (ζ0 (ιagsel · ιω · ιget)s)m−1 > 0 (B.4)

Lemma B.0.7 ([25, Observation B.7]). Given the assumptions of Theorem 3.1.1 and
assuming Stage 0 to have been completed, Stage 1 requires at most st1 = s(m−1)+
s− 1 steps taken with probability greater than or equal to pr1 > 0.

Proof. Following the assumptions of Theorem 3.1.1 there must be at least one loc-
ation i ∈ Loc with the total amount of energy greater than the migration threshold

153



emigr (of course at least one agent must be present there). An agent aggen1,n1 is
chosen from this location.

At each step of this stage the set of locations can be divided into three distinct
sets:
• Loc∅: empty locations (containing no active agents)— there is no activity there.

• Locget: #Locget = 1, single location containing the agent chosen at the begin-
ning of the stage that performs a sequence of get actions in order to remove its
neighbors (if they exist) in this location. Following the proof of Lemma B.0.6 we
may estimate the number of steps necessary to perform this sequence as m− 1.

• Locmigr: other locations. The agents present in other non-empty locations are
trying to perform the global action migr but their requests are rejected by MA.
The probability of performing one action get in the sequence discussed is given

by:

ζ loc(z)

(
agseli(z)(gen1, nξ) · ω(gen1, z)(get) · δ

gen1,nξ
get (z)(1) · %gen1,nξ

get (z)(z′)

)
·

∏
j∈Locmigr

(
agselj(x)(genj , nj) · ω(genj , z)(migr)

)
> ζ0 (ιagsel · ιω · ιget) ·

∏
i∈Locmigr

(ιagsel · ιω) > ζ0 · ιagsel · ιω · ιget (B.5)

where z is the current state of the system. It is set to x01 at the beginning of Stage 1
and the final state of this stage z equals x12. The copy number of the chosen agent nξ
is equal to n1 at the beginning of Stage 1 and then changes according to the migration
rule becoming n′1 ∈ Pi1 at the end of this stage. Note that the estimation given by Eq.
(B.5) does not depend on the number of the step in the Stage 1. Then, the probability
of removing all agents from a single location is given by:

(ζ0 · ιagsel · ιω · ιget)m−1 (B.6)

After the removal of all its neighbours the chosen agent has to perform migration.
The probability of this step is given by:

ζgl(z) · locsel(z)(i)(
agseli(z)(gen1, nξ) · ω(gen1, z)(migr)δ

gen1,nξ
migr (z)(1) · %gen1,nξ

migr (z)(z′′)

)
> ζ0 · ιlocsel · ιagsel · ιω · ιmigr (B.7)

where z′′ is a state obtained after migrating of the chosen agent from one location to
another.
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Let us assume thatAt is an event that consists in removing all agents and migrat-
ing between the locations in the consecutive steps. The probability of each At may
be evaluated by Eqs. (B.6)–(B.7). According to Lemma B.0.5, the probability of the
whole sequence can be bounded from below by:

pr1 = (ζ0 · ιagsel · ιω · ιget)s·(m−1) (ζ0 · ιlocsel · ιagsel · ιω · ιmigr)s−1 (B.8)

Moreover, the number of steps in the sequence may be estimated by the constant
st1 = s(m− 1) + s− 1.

Lemma B.0.8 ([25, Lemma B.8]). Given the assumptions of Theorem 3.1.1 and as-
suming Stage 1 to have been completed, Stage 2 requires at most st2 = m steps taken
with probability greater or equal to pr2 > 0.

Proof. There is only one agent aggen1,n′1
in the system, so in order to produce another

agent using clo it needs to perform 1 step. Then, it passes all its energy to its offspring
by performing get action (m− 1) times.

The probability of the first step of this sequence is as follows:

ζ loc(x12) · agseli1(x12)(gen1, n
′
1) · ω(gen1, x12)(clo)·

δ
gen1,n′1
clo (x12)(1) · %gen1,n′1

clo (x12)(z′)

> ζ0 · ιagsel · ιω · ιclo (B.9)

where z′ is the state where aggen2,n2 was introduced into the system after performing
the cloning action by aggen1,n′1

.
Now after cloning, the agent aggen1,n′1

performs at most (m−1) times get action
to pass all its energy to aggen2,n2 . A single step of this sequence has the following
probability:

ζ loc(z)

(
agseli1(z)(gen1, n

′
1) · ω(gen1, z)(get) · δ

gen1,n′1
get (1) · %gen1,n′1

get (z)(z′′)

)
> ζ0 · ιagsel · ιω · ιget (B.10)

where z is the current state (at the end of the stage z will be equal to x23) and z′′ is
the state after aggen1,n′1

passed a part of its energy to aggen2,n2 .
AssumingAt is an event that consists in performing the t-th step of the sequence

described above, according to Lemma B.0.5, the probability of Stage 2 will be eval-
uated from below by:

pr2 = ζ0 · ιagsel · ιω · ιclo · (ζ0 · ιagsel · ιω · ιget)m−1 > 0 (B.11)

and st2 = 1 + (m− 1) = m.
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Lemma B.0.9 ([25, Lemma B.9]). Given the assumptions of Theorem 3.1.1 and as-
suming Stage 2 to have been completed, Stage 3 requires at most st3 = (m + 1)s

steps taken with probability greater than or equal to pr3 > 0.

Proof. Assuming Stage 2 to have been completed, there is only one non-empty loca-
tion i1 containing agent aggen2,n2 . The agent starts the second round of migration by
performing the action migr. It is assumed that the path of this round is composed of
a sequence of locations that ends at the i2-th location. The location i2 is one of the
non-empty locations in the state xe that contains total energy higher than the migra-
tion threshold emigr. The length of this path is at most s. Note that the path is not
intersecting, with the possible exception of the last location.

The probability of migration of the agent aggen2,n2 between current location i to
the next location of this path is given by:

ζgl(z) · locsel(z)(i)(
agseli(z)(gen2, nξ) · ω(gen2, z)(migr)δ

gen2,nξ
migr (z)(1) · %gen2,nξ

migr (z)(z′)

)
> ζ0 · ιlocsel · ιagsel · ιω · ιmigr (B.12)

where z is the current state (in the beginning z = x23 at the end of the stage z will
be equal to x34), z′ is a state obtained after migrating of the agent aggen2,nξ from
current location i to the next one along the mentioned path, nξ ∈ Pi is the current
copy number of the migrating agent.

Locmigr ⊂ Loc will denote a non-empty subset of locations which does not
contain the current location in which ag

genfirsti ,nfirsti
is cloned or feeded by the life

energy (i /∈ Locmigr). We assume that certain agents aggenj ,nj , j ∈ Locmigr try to
perform global action migr and their requests are rejected by the MA.

The probability of each step in which the new agent ag
genfirsti ,nfirsti

is produced
is evaluated by:

ζ loc(z) · agseli(z)(gen2, nξ)

·ω(gen2, z)(clo) · δ
gen2,nξ
clo (z)(1) · %gen2,nξ

clo (z)(z′)∏
j∈Locmigr

(agselj(z)(genj , nj) · ω(genj , z)(migr))

> ζ0 · ιagsel · ιω · ιclo · (ιagsel · ιω)s−1 (B.13)

where z is the current state and z′ is the state in which ag
genfirsti ,nfirsti

is created in
the system and again nξ ∈ Pi is the current number of copy of the migrating agent.

Now the agent passes the sufficient amount of energy (required to bring the total
sum of energy of the i-th location to the value perceived in the system state xe) to

156



agent ag
genfirsti ,nfirsti

by performing at most (m − 1) times get. The probability of
one get action is here as follows:

ζ loc(z)

(
agseli(z)(gen2, nξ) · ω(gen2, z)(get) · δ

gen2,nξ
get (z)(1) · %gen2,nξ

get (z)(z′′)

)
∏

j∈Locmigr

(agselj(z)(genj , nj) · ω(genj , z)(migr))

> ζ0 · ιagsel · ιω · ιget · (ιagsel · ιω)s−1 (B.14)

where z is the current state, z′′ is the state where aggen2,nξ passed a part of its energy
to ag

genfirsti ,nfirsti
and nξ as in the previous Eq. (B.13).

Assuming At to be the consecutive t-th event described above, according to
Lemma B.0.5, the probability of the whole Stage 3 will be bounded from below by:

pr3 =

(
ζ0 · ιlocsel · ιagsel · ιω · ιmigr · ζ0 · ιagsel · ιω · ιclo · (ιagsel · ιω)s−1

)s−1

(
ζ0 · ιagsel · ιω · ιget · (ιagsel · ιω)s−1

)m−1
> 0. (B.15)

The number of steps required for performing the whole sequence is st3 = 2 · (s −
1) + (m− 1).

Lemma B.0.10 ([25, Lemma B.10]). Given the assumptions of Theorem 3.1.1 and as-
suming Stage 3 to have been completed, Stage 4 requires at most st4 = maxi∈Loc{qi}
steps taken with probability greater than or equal to pr4 > 0.

Proof. We divide the set of locations into three distinct sets:

• Empty locations Loc∅ ⊂ Loc (containing no active agents): there is no activity
there.

• Locations Locmigr ⊂ Loc in which one agent attempts to perform migr action
and fails (these locations contain one agent in the final state xe or have just
finished recreation of the agents in the final state).

• Other locations Locclo ⊂ Loc in which one agent ag
genfirsti ,nfirsti

performs a
sequence of the clo actions in order to recreate the population of its neighbors
(required in the state xe).
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The probability of this step may be evaluated by:

ζ loc(z)
∏

i∈Locclo

(
agseli(z)(gen

first
i , nfirsti ) · ω(genfirsti , z)(clo)·

δ
genfirsti ,nfirsti
clo (z)(1) · %gen

first
i ,nfirsti

clo (z′)(z′′)

)
∏

i∈Locmigr

(
agseli(z)(geni, ni) · ω(geni, z)(migr)

)
> ζ0

∏
i∈Locclo

(ιagsel · ιω · ιclo)
∏

i∈Locmigr

(ιagsel · ιω)

> ζ0 (ιagsel · ιω ·min{ιclo, ιω})s (B.16)

where z is the current state, z = x34 at the beginning and z = x45 at the end of the
stage, geni, ni is the quasi signature of an arbitrary agent in the location i ∈ Locmigr.
Note that the whole sequence of the clo actions on one location may have length
maxi∈Loc{qi} in the worst case, so st4 = maxi∈Loc{qi}.

Assuming At to be an event that consists in performing the t-th step of the se-
quence described above, according to Lemma B.0.5, the probability of the whole
sequence will be bounded from below by:

pr4 = (ζ0 (ιagsel · ιω ·min{ιclo, ιω})s)maxi∈Loc{qi} > 0. (B.17)

Lemma B.0.11 ([25, Lemma B.11]). Given the assumptions of Theorem 3.1.1, Stage
5 requires at most st5 = m − 1 steps in parallel taken with probability greater than
or equal to pr5 > 0.

Proof. We divide the set of locations into three distinct sets:
• Empty locations Loc∅ ⊂ Loc (containing no active agents): there is no activity

there.

• Locmigr ⊂ Loc: in these locations, the agent tries to perform the global action
migr but its requests are rejected by MA (these locations contain one agent in
the final state xe or have just finished redistribution of the agents’ energy in the
final state).

• Other locations Locget ⊂ Loc: the agent containing the highest amount of en-
ergy (ag

genfirsti ,nfirsti
) performs a sequence of get actions in order to pass the

sufficient amount of energy to all its neighbours (required in the state xe).
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After each agent ag
genfirsti ,nfirsti

has finished distributing energy it starts to per-
form the global actionmigr but its requests are rejected, and waits for other agents to
finish their sequences. The locations containing exactly one agent behave in the same
way. In the worst case there will be (s− 1) agents performing this global action.

The probability of performing one of the get action of the sequence described
above is given by:

ζ loc(z)
∏

i∈Locget

(
agseli(z)(gen

first
i , nfirsti )·

ω(genfirsti , z)(get)·

δ
genfirsti ,nfirsti
get (z)(1) · %gen

first
i ,nfirsti

get (z′)(z′′)

)
∏

i∈Locmigr

(
agseli(z)(geni, ni) · ω(geni, z)(migr)

)
> ζ0

∏
i∈Locget

(ιagsel · ιω · ιget)
∏

i∈Locmigr

(ιagsel · ιω)

> ζ0 (ιagsel · ιω ·min{ιget, ιω})s (B.18)

where z is the current state, z = x45 at the beginning and z = xe at the end of this
stage and geni, ni is the quasi signature of an arbitrary agent present in the location
i ∈ Locmigr.

Assuming At to be an event that consists in performing the t-th step of the se-
quence described above, according to Lemma B.0.5, the probability of the whole
sequence will be bounded from below by:

pr5 = (ζ0 (ιagsel · ιω ·min{ιget, ιω})s)m−1 > 0. (B.19)

To conclude the proof of Theorem 3.1.1 let us note that lemmas B.0.6–B.0.11
together state the fact that the total number of steps necessary for passing between
states xb and xe is not greater than

st =

5∑
a=0

sta < +∞. (B.20)

Let us recall that all actions taken in the consecutive stages 0 – 5 are executable,
assuming the completion of the previous stages. The probability of completing each
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stage a = 1, . . . , 5 was bounded from below independently on the state imposed by
the previous stage by pra > 0. Thus the following positive real number

pr =

5∏
a=0

pra > 0 (B.21)

estimates from below the probability of passing from xb to xe. As the states were
taken arbitrarily, we can show analogously that one can pass from xe to xb with a
positive probability, which concludes the proof.
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[169] Siwik L., Dreżewski R.: Agent-based multi-objective evolutionary algorithms
with cultural and immunological mechanisms. [In:] dos Santos W. P., (Ed.):
Evolutionary computation. In-Teh, 2009, 541–556

174



[170] Solis F., Wets R.: Minimization by random search techniques. Mathematical
Methods of Operations Research, vol. 6, 1981, 19–30

[171] Stadnyk I.: Schema recombination in a pattern recognition process. [In:] Proc.
of the Second Int. Conf. on Genetic Algorithms. Cambridge, MA: Lawrence
Erlbaum Associates, 1987, 27–35

[172] Stuart A. Strategies for number puzzles of all kinds. www.sudoku.wiki.
org (accessed 17.04.2013)

[173] Stuart A.: The Logic of Sudoku. Michael Mepham Publishing, 2007

[174] Stuart A.: Sudoku Creation and Grading. Feb 2007

[175] Suzuki J.: A Markov Chain Analysis on a Genetic Algorithm. [In:] Forrest S.,
(Ed.): Proceedings of the 5th International Conference on Genetic Algorithms,
Urbana-Champaign, IL, USA, June 1993. Morgan Kaufmann, 1993, 146–154

[176] Talbi E.-G.: A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics,
vol. 8, 2002, 541–564

[177] Talbi E.-G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics, vol. 8,
no. 5, 2002, 541–564

[178] Talbi E.-G.: Metaheuristics: From Design to Implementation. Wiley, 2009

[179] Talbi N., Belarbi K.: Optimization of Fuzzy Controller using Hybrid Tabu
Search and Particle Swarm Optimization. [In:] Hybrid Intelligent Systems
(HIS), 2011 11th International Conference on. dec. 2011, 561 –565

[180] Tomassini M.: Spatially Structured Evolutionary Algorithms. Springer, 2005

[181] Uhruski P., Grochowski M., Schaefer R.: A Two-layer Agent-Based System For
Large-Scale Distributed Computation. Computational Intelligence, vol. 24,
no. 3, July 2008, 191–212

[182] Uhruski P., Grochowski M., Schaefer R.: Multi-Agent Computing System in
a Heterogeneous Network. [In:] Proceedings of the International Conference
on Parallel Computing in Electrical Engineering (PARELEC 2002). Warsaw,
Poland, 22–25 September 2002, IEEE Computer Society Press, 233–238

[183] Uhruski P., Grochowski M., Schaefer R.: Octopus – Computation Agents En-
vironment. Inteligencia Artificial, Revista Iberoamericana de IA, vol. 9, no. 28,
2005, 55–62

175



[184] Uhruski P., Grochowski M., Schaefer R.: A Two-Layer Agent-Based System for
Large-Scale Distributed Computation. Computational Intelligence, vol. 24,
no. 3, August 2008, 191–212

[185] Victoire T. A. A., Jeyakumar A. E.: A tabu search based hybrid optimization
approach for a fuzzy modelled unit commitment problem. Electric Power Sys-
tems Research, vol. 76, no. 6–7, 2006, 413 – 425

[186] Victoire T., Jeyakumar A.: Unit commitment by a tabu-search-based hybrid-
optimisation technique. Generation, Transmission and Distribution, IEE
Proceedings-, vol. 152, no. 4, july 2005, 563–574

[187] Vose M.: The Simple Genetic Algorithm: Foundations and Theory. Cambridge,
MA, USA, MIT Press, 1998

[188] Vose M. D.: The Simple Genetic Algorithm: Foundations and Theory. Cam-
bridge, MA, USA, MIT Press, 1998

[189] Wang H., Wang D., Yang S.: A memetic algorithm with adaptive hill climbing
strategy for dynamic optimization problems. Soft Computing, vol. 13, no. 8–9,
2008, 763–780

[190] Whitley D., Scott Gordon V., Mathias K.: Lamarckian evolution, the Baldwin
effect and function optimization. [In:] Davidor, Y. and Schwefel, H.-P. and
Männer, R., (Ed.): Proc. of Parallel Problem Solving from Nature III. Springer,
1994

[191] Whitley D.: An Executable Model of a Simple Genetic Algorithm. [In:] Found-
ations of Genetic Algorithms 2. Morgan Kaufmann, 1992, 45–62

[192] Wolpert D., Macready W.: No free lunch theorems for search. Technical Report
SFI-TR-02-010, Santa Fe Institute, 1995

[193] Wolpert D., Macready W.: No Free Lunch Theorems for Optimization. IEEE
Transactions on Evolutionary Computation, vol. 67, no. 1, 1997

[194] Wooldridge M.: An Introduction to Multiagent Systems. John Wiley & Sons
Inc., 2004

[195] Wooldridge M., Jennings N.: Intelligent Agents. [In:] LNAI 890. Springer
Verlag, 1995

[196] Wooldridge M.: An Introduction to Multiagent Systems. John Wiley & Sons,
2009

176
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