Numer czasopisma  

Computer Methods in Materials Science

Ładuję...
thumbnail.journal.alt
ISSN: 2720-4081
e-ISSN:

Data wydania
2024
Rocznik
Vol. 24
Numer
No. 1
Prawa dostępu
Dostęp: otwarty dostęp
Uwagi:
Prawa: CC BY 4.0
Attribution 4.0 International
Uznanie autorstwa 4.0 Międzynarodowe (CC BY 4.0)

Strony
Opis
Rocznik czasopisma (rel.)
Rocznik czasopisma
Computer Methods in Materials Science
Vol. 24 (2024)
Artykuły numeru (rel.)
Artykuł
Otwarty dostęp
Development of an object identification algorithm for the forging industry based on standard vision systems
(Wydawnictwa AGH, 2024) Litwa, Adrian; Madej, Łukasz
The work aims to develop an algorithm for identifying objects in a forging plant under production conditions. Particular emphasis is placed on the accurate detection and tracking of forgings that are transferred along the forging line and, if possible, detection will also cover employees controlling and supporting the operation of forging machines, all of this with the use of standard vision systems. An algorithm prepared in such way will allow the performance of effective detections that will support activities related to the control of the movement of forging elements, the analysis of safety in workplaces, and the monitoring of compliance with Occupational Health and Safety Regulations by employees, as well as also allowing for the introduction of additional optimization algorithms that will further enrich the presented model, which may prove to be a long-term goal that will form the basis for subsequent work. Three algorithmic solutions with different levels of complexity were considered during the research. The first two are based on artificial neural network solutions, while the last one utilizes classical image processing algorithms. The datasets for training and validation in the former cases were generated based on the recordings taken from standard cameras located in the forging plant. Data were acquired from three cameras, two of which were used to create training and validation sets, and a third one was used to verify how the developed algorithms would work in a variable environment that was previously unknown to the models. The impact of model parameters on the results is presented at this stage of the research. It has been proven that machine learning-based solutions cope very well with object detection problems and achieve high accuracies after a precise selection of hyperparameters. Algorithms show the performance of detections with excellent accuracy of 92.5% for YOLOv5 and 94.3% for Mask R-CNN. However, a competitive solution using only image transformations without machine learning showed satisfactory results that can also be obtained with simpler approaches.
Artykuł
Otwarty dostęp
Functionally graded porous material and its application in sandwich beams for bending and vibration behaviors
(Wydawnictwa AGH, 2024) Ton That, Lan Hoang
The article describes a functionally graded porous material in an application for sandwich beams. The bending and vibration behaviors of this structure are studied using the finite element method based on a simple beam model. The influences of some parameters, e.g., the porosity factor or the exponent graded, are also studied in this article. Finally, the numerical results are presented with some discussion.
Artykuł
Otwarty dostęp
Capabilities of numerical simulation support for defect investigations in die forgings
(Wydawnictwa AGH, 2024) Hawryluk, Marek; Polak, Sławomir; Dudkiewicz, Łukasz; Marzec, Jan; Jabłońska, Magdalena; Suliga, Maciej; Tkocz, Roger; Korpala, Grzegorz
The article concerns the use of the results of numerical simulations, primarily for the detection of defects in forged products identified at various stages, along with the analysis of the geometry of forgings and the way in which the material flows in tools. The work presents the results of measurements and analyses using numerical modelling based on computational packages dedicated to forging processes such as: QForm, Forge, etc., which are equipped with special functions that significantly facilitate analyses by both technicians and designers. These functions include: contact of the deformed material with the tool, flow line distribution, “trap” or “fold” functions for detecting forging defects, as well as other technological parameters and physical sizes, which are crucial in the case of a comprehensive analysis of the industrial die forging process. The novelty of the work is the presentation of the possibility of simultaneously combining many different non-destructive techniques and methods, e.g. results of FE simulations with 3D reverse scanning, minimizing interference in the industrial process. The research carried out allows for the thorough and rapid analysis of the correctness of the deformation of the forging material for selected forging processes, along with the presentation of methods for their prevention and solving va
Artykuł
Otwarty dostęp
Plastic deformation mechanisms in BCC single crystals and equiatomic alloys: Insights from nanoindentation
(Wydawnictwa AGH, 2024) Dominguez-Gutierrez, Francisco Javier; Papanikolaou, Stefanos; Bonfanti, Silvia; Alava, Mikko
Deformation plasticity mechanisms in alloys and compounds may reveal the material’s capacity towards optimal mechanical properties. We conducted a series of molecular dynamics (MD) simulations to investigate plasticity mechanisms due to nanoindentation in pure tungsten, molybdenum, and vanadium body-centered cubic single crystals, as well as the body-centered cubic, equiatomic, random solid solutions (RSS) of tungsten–molybdenum and tungsten–vanadium alloys. Our analysis focuses on a thorough, side-by-side comparison of dynamic deformation processes, defect nucleation, and evolution, along with corresponding stress–strain curves. We also checked the surface morphology of indented samples through atomic shear strain mapping. As expected, the presence of Mo and V atoms in W matrices introduces lattice strain and distortion, increasing material resistance to deformation and slowing down dislocation mobility of dislocation loops with a Burgers vector of 1/2 ?111?. Our side-by-side comparison displays a remarkable suppression of the plastic zone size in equiatomic W–V RSS, but not in equiatomic W–Mo RSS alloys, displaying a clear prediction for optimal hardening response of equiatomic W–V RSS alloys. If the small-depth nanoindentation plastic response is indicative of overall mechanical performance, it is possible to conceive a novel MD-based pathway towards material design for mechanical applications in complex, multi-component alloys.
Artykuł
Otwarty dostęp
A case study on tundish fluid flow with electromagnetic stirring
(Wydawnictwa AGH, 2024) Zielińska, Monika; Yang, Hongliang; Madej, Łukasz; Malinowski, Łukasz
Tundish is a crucial component just before casting and plays a pivotal role in enhancing the cleanliness and overall homogeneity of the final steel composition. The paper deals with the development of an advanced Computational Fluid Dynamics (CFD) model, specifically focusing on the molten steel flow within the tundish to numerically support its further improvements. A noteworthy addition to the model is the consideration of an electromagnetic stirring device. This device significantly influences steel cleanliness and composition, thereby affecting the final properties of the formed metallic parts in subsequent processing stages. The current investigation presents a comprehensive analysis of flow patterns and stirring energy distributions in relation to active and dead zones within the tundish. Through the developed coupled electromagnetic/fluid dynamic model, the paper demonstrates the feasibility of optimizing mixing processes to control the properties of the final product.
Słowa kluczowe