Artykuł  

On the computational cost and complexity of stochastic inverse solvers

Link do zdalnego zasobu
Dostęp z terminali w BG AGH
Data publikacji
2016
Data publikacji (copyright)
Data prezentacji
Data obrony
Data nadania stopnia
Autorzy (rel.)
Faliszewski, Piotr
Smołka, Maciej
Schaefer, Robert
Paszyński, Maciej
Nr albumu:
Prawa dostępu
Dostęp: otwarty dostęp
Uwagi:
Prawa: CC BY 4.0
Attribution 4.0 International
Uznanie autorstwa 4.0 Międzynarodowe (CC BY 4.0)

Inny tytuł
Typ zasobu:
artykuł
Wersja
wersja wydawnicza
Sygnatura:
Nr normy / patentu
Numer czasopisma (rel.)
Numer czasopisma
Computer Science
2016 - Vol. 17 - No. 2
Szczegóły wydania / pracy
Uczelnia:
Opublikowane w: Computer Science. -:. Vol. 17 No. 2, pp. 225-264
Opis fizyczny:Skala:Zasięg:
ISBN:e-ISBN:
Seria:ISSN: 1508-2806e-ISSN: 2300-7036
Jednostka AGH:
Kierunek:
Forma studiów:
Stopień studiów:
Uzyskany tytuł:
Instytucja sprawcza:
Redaktorzy (rel.)
Promotorzy (rel.)
Recenzenci (rel.)
Projekty badawcze (rel.)
Projekt
Tytuł:
ID:Program:
Instytucja Finansująca
ROR: 
Dane badawcze:
Jednostki organizacyjne (rel.)
Wydarzenia (rel.)
Dyscyplina
Słowa kluczowe
hierarchic genetic strategy, inverse problem, hybrid method
Dyscyplina (2011-2018)
Specjalność
Klasyfikacja MKP
Abstrakt

The goal of this paper is to provide a starting point for investigations into a mainly underdeveloped area of research regarding the computational cost analysis of complex stochastic strategies for solving parametric inverse problems. This area has two main components: solving global optimization problems and solving forward problems (to evaluate the misfit function that we try to minimize). For the first component, we pay particular attention to genetic algorithms with heuristics and to multi-deme algorithms that can be modeled as ergodic Markov chains. We recall a simple method for evaluating the first hitting time for the single-deme algorithm and we extend it to the case of HGS, a multi-deme hierarchic strategy. We focus on the case in which at least the demes in the leaves are well tuned. Finally, we also express the problems of finding local and global optima in terms of a classic complexity theory. We formulate the natural result that finding a local optimum of a function is an NP-complete task, and we argue that finding a global optimum is a much harder, DP-complete, task. Furthermore, we argue that finding all global optima is, possibly, even harder (#P-hard) task. Regarding the second component of solving parametric inverse problems (i.e., regarding the forward problem solvers), we discuss the computational cost of hp-adaptive Finite Element solvers and their rates of convergence with respect to the increasing number of degrees of freedom. The presented results provide a useful taxonomy of problems and methods of studying the computational cost and complexity of various strategies for solving inverse parametric problems. Yet, we stress that our goal was not to deliver detailed evaluations for particular algorithms applied to particular inverse problems, but rather to try to identify possible ways of obtaining such results.

Opis
Zawartość