Finding the inverse of a polynomial modulo in the ring Z[x] based on the method of undetermined coefficients
Link do zdalnego zasobu
Dostęp z terminali w BG AGH
Data publikacji
Data publikacji (copyright)
Data prezentacji
Data obrony
Data nadania stopnia
Autorzy (rel.)
Inny tytuł
Typ zasobu:
artykułWersja
Sygnatura:
Nr normy / patentu
Szczegóły wydania / pracy
Redaktorzy (rel.)
Promotorzy (rel.)
Recenzenci (rel.)
Projekt
Tytuł:Dyscyplina
Słowa kluczowe
inverse of a polynomial modulo, ring of polynomials, Euclidean algorithm, degree of a polynomial, method of undetermined coefficients, time complexity, efficiencyDyscyplina (2011-2018)
Specjalność
Klasyfikacja MKP
Abstrakt
This paper presents the theoretical foundations of finding the inverse of a polynomial modulo in the ring Z[x] based on the method of undetermined coefficients. The use of the latter makes it possible to significantly reduce the time complexity of calculations avoiding the operation of finding the greatest common divisor. An example of calculating the inverse of a polynomial modulo in the ring Z[x] based on the proposed approach is given. Analytical expressions of the time complexities of the developed and classical methods depending on the degrees of polynomials are built. The graphic dependence of the complexity of performing the operation of finding the inverse of a polynomial in the ring Z[x] is presented, which shows the advantages of the method based on undetermined coefficients. It is found that the efficiency of the developed method increases logarithmically with an increase in the degrees of polynomials.