Artykuł
Reduction of positive self-adjoint extensions
creativeworkseries.issn | 1232-9274 | |
dc.contributor.author | Tarcsay, Zsigmond | |
dc.contributor.author | Sebestyén, Zoltán | |
dc.date.issued | 2024 | |
dc.description.abstract | We revise Krein's extension theory of semi-bounded Hermitian operators by reducing the problem to finding all positive and contractive extensions of the "resolvent operator" $(I+T)^{-1}$ of $T$. Our treatment is somewhat simpler and more natural than Krein's original method which was based on the Krein transform $(I-T)(I+T)^{-1}$. Apart from being positive and symmetric, we do not impose any further constraints on the operator $T$: neither its closedness nor the density of its domain is assumed. Moreover, our arguments remain valid in both real or complex Hilbert spaces. | en |
dc.description.placeOfPublication | Kraków | |
dc.description.version | wersja wydawnicza | |
dc.identifier.doi | https://doi.org/10.7494/OpMath.2024.44.3.425 | |
dc.identifier.eissn | 2300-6919 | |
dc.identifier.issn | 1232-9274 | |
dc.identifier.uri | https://repo.agh.edu.pl/handle/AGH/108011 | |
dc.language.iso | eng | |
dc.publisher | Wydawnictwa AGH | |
dc.rights | Attribution 4.0 International | |
dc.rights.access | otwarty dostęp | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/legalcode | |
dc.subject | positive selfadjoint contractive extension | en |
dc.subject | nonnegative selfadjoint extension | en |
dc.subject | Friedrichs and Krein–von Neumann extension | en |
dc.title | Reduction of positive self-adjoint extensions | en |
dc.title.related | Opuscula Mathematica | |
dc.type | artykuł | |
dspace.entity.type | Publication | |
publicationissue.issueNumber | No. 3 | |
publicationissue.pagination | pp. 425-438 | |
publicationvolume.volumeNumber | Vol. 44 | |
relation.isJournalIssueOfPublication | 605aaeb9-f9da-42f4-89ca-d2c8ace02313 | |
relation.isJournalIssueOfPublication.latestForDiscovery | 605aaeb9-f9da-42f4-89ca-d2c8ace02313 | |
relation.isJournalOfPublication | 304b3b9b-59b9-4830-9178-93a77e6afbc7 |
Pliki
Pakiet podstawowy
1 - 1 z 1
Ładuję...
- Nazwa:
- OpMath.2024.44.3.425.pdf
- Rozmiar:
- 542.96 KB
- Format:
- Adobe Portable Document Format
- Opis: