Artykuł  

Reduction of positive self-adjoint extensions

creativeworkseries.issn1232-9274
dc.contributor.authorTarcsay, Zsigmond
dc.contributor.authorSebestyén, Zoltán
dc.date.issued2024
dc.description.abstractWe revise Krein's extension theory of semi-bounded Hermitian operators by reducing the problem to finding all positive and contractive extensions of the "resolvent operator" $(I+T)^{-1}$ of $T$. Our treatment is somewhat simpler and more natural than Krein's original method which was based on the Krein transform $(I-T)(I+T)^{-1}$. Apart from being positive and symmetric, we do not impose any further constraints on the operator $T$: neither its closedness nor the density of its domain is assumed. Moreover, our arguments remain valid in both real or complex Hilbert spaces.en
dc.description.placeOfPublicationKraków
dc.description.versionwersja wydawnicza
dc.identifier.doihttps://doi.org/10.7494/OpMath.2024.44.3.425
dc.identifier.eissn2300-6919
dc.identifier.issn1232-9274
dc.identifier.urihttps://repo.agh.edu.pl/handle/AGH/108011
dc.language.isoeng
dc.publisherWydawnictwa AGH
dc.rightsAttribution 4.0 International
dc.rights.accessotwarty dostęp
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/legalcode
dc.subjectpositive selfadjoint contractive extensionen
dc.subjectnonnegative selfadjoint extensionen
dc.subjectFriedrichs and Krein–von Neumann extensionen
dc.titleReduction of positive self-adjoint extensionsen
dc.title.relatedOpuscula Mathematica
dc.typeartykuł
dspace.entity.typePublication
publicationissue.issueNumberNo. 3
publicationissue.paginationpp. 425-438
publicationvolume.volumeNumberVol. 44
relation.isJournalIssueOfPublication605aaeb9-f9da-42f4-89ca-d2c8ace02313
relation.isJournalIssueOfPublication.latestForDiscovery605aaeb9-f9da-42f4-89ca-d2c8ace02313
relation.isJournalOfPublication304b3b9b-59b9-4830-9178-93a77e6afbc7
Pliki
Pakiet podstawowy
Teraz pokazywane1 - 1 z 1
Ładuję...
Miniatura
Nazwa:
OpMath.2024.44.3.425.pdf
Rozmiar:
542.96 KB
Format:
Adobe Portable Document Format
Opis: