Artykuł  

Flood-susceptibility Analysis of Kolhapur City Using Frequency Ratio Model

Link do zdalnego zasobu
Dostęp z terminali w BG AGH
Data publikacji
2024
Data publikacji (copyright)
Data prezentacji
Data obrony
Data nadania stopnia
Autorzy (rel.)
Powar, Sudhir K.
Panhalkar, Sachin S.
Nr albumu:
Prawa dostępu
Dostęp: otwarty dostęp
Uwagi:
Prawa: CC BY 4.0
Attribution 4.0 International
Uznanie autorstwa 4.0 Międzynarodowe (CC BY 4.0)

Inny tytuł
Typ zasobu:
artykuł
Wersja
wersja wydawnicza
Sygnatura:
Nr normy / patentu
Numer czasopisma (rel.)
Numer czasopisma
Geomatics and Environmental Engineering
2024 - Vol. 18 - No. 6
Szczegóły wydania / pracy
Uczelnia:
Opublikowane w: Geomatics and Environmental Engineering. - Kraków: Wydawnictwa AGH. Vol. 18 No. 6, pp. 23-45
Opis fizyczny:Skala:Zasięg:
ISBN:e-ISBN:
Seria:ISSN: 1898-1135e-ISSN: 2300-7095
Jednostka AGH:
Kierunek:
Forma studiów:
Stopień studiów:
Uzyskany tytuł:
Redaktorzy (rel.)
Promotorzy (rel.)
Recenzenci (rel.)
Projekty badawcze (rel.)
Projekt
Tytuł:
ID:Program:
Instytucja Finansująca
ROR: 
Dane badawcze:
Jednostki organizacyjne (rel.)
Wydarzenia (rel.)
Dyscyplina
Słowa kluczowe
flood susceptibility, frequency ratio model, receiver operating characteristic curve, geographic information system
Dyscyplina (2011-2018)
Specjalność
Klasyfikacja MKP
Abstrakt

Flooding is an inevitable but natural process that happens over the period of time; it not only endangers people’s health, wealth, and assets, but it has also a negative impact on a country’s economy. Hence, effective flood management is required in order to minimize the influence of flooding on human lives and livelihoods. The aim of this research is to use a frequency ratio model (FRM) to identify flood-susceptibility areas in the city of Kolhapur. The research was conducted in two parts. Initially, field-survey data was used to create a flood-inventory map. There were 255 flood locations identified throughout the research region; of these, 178 locations (70%) were used for training data, and 77 (30%) were used for verification purposes. The spatial database was then used; from this, ten flood contributing parameters were generated: slope, elevation, rainfall, distance from a river, a stream power index (SPI), a topographical wetness index (TWI), a topographical roughness index (TRI), a plan curvature and profile curvature, and land use/land cover. Finally, an FR model database was created for flood-susceptible mapping. The prepared database was separated into four flood-susceptibility zones: low susceptibility, medium susceptibility, high susceptibility, and very high susceptibility. About 26.08% of the land was classified as ‘very high susceptibility,’ while 21.18% was classified as ‘high susceptibility.’ The final flood-susceptibility map was verified by using the receiver operating characteristic (ROC) curve. The results indicated that the method that was used in this study provided accurate results (with a success rate of 87%); this indicated an acceptable result for our flood-susceptibility zonation. Local administrations, researchers, and planners will benefit greatly from this flood-susceptibility analysis in developing flood-prevention plans.

Opis
Contains