Artykuł  

Microstructural, Fluid Dynamic, and Mechanical Characterization of Zinc Oxide and Magnesium Chloride-Modified Hydrogel Scaffolds

Link do zdalnego zasobu
Dostęp z terminali w BG AGH
Data publikacji
2024
Data publikacji (copyright)
Data prezentacji
2024-07-16
Data obrony
Data nadania stopnia
Autorzy (rel.)
de Mello Innocentini, Murilo Daniel
Fuzatto Bueno, Bruno Ribeiro
Urbaś, Agnieszka
Nr albumu:
Prawa dostępu
Dostęp: otwarty dostęp
Uwagi:
Prawa: CC BY 4.0
Attribution 4.0 International
Uznanie autorstwa 4.0 Międzynarodowe (CC BY 4.0)

Inny tytuł
Typ zasobu:
artykuł
Wersja
wersja wydawnicza
Sygnatura:
Nr normy / patentu
Numer czasopisma (rel.)
Szczegóły wydania / pracy
Uczelnia:
Opublikowane w: ACS Biomaterials Science & Engineering. -:. 10, 4791-4801
Opis fizyczny:Skala:Zasięg:
ISBN:e-ISBN:
Seria:ISSN:e-ISSN:
Jednostka AGH: AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites
Kierunek:
Forma studiów:
Stopień studiów:
Uzyskany tytuł:
Redaktorzy (rel.)
Promotorzy (rel.)
Recenzenci (rel.)
Projekty badawcze (rel.)
Projekt
Tytuł: MINIATURA 7_Wysokowytrzymałe podłoża hydrożelowe stanowiące nośnik substancji aktywnych biologicznie stymulujących regenerację chrząstki
ID: 2023/07/X/ST11/00609Program:
Instytucja Finansująca Narodowe Centrum Nauki (NCN)
ROR: 03ha2q922 
Jednostki organizacyjne (rel.)
Wydarzenia (rel.)
Dyscyplina
Słowa kluczowe
composite scaffolds, zinc oxide, magnesium, nanohydroxyapatite, permeability, biomimetic
Dyscyplina (2011-2018)
Specjalność
Klasyfikacja MKP
Abstrakt

Scaffolds for filling and regeneration of osteochondral defects are a current challenge in the biomaterials field, and solutions with greater functionality are still being sought. The novel approach of this work was to obtain scaffolds with biological active additives possessing microstructural, permeability and mechanical properties mimicking the complexity of natural cartilage. Four types of scaffolds with a gelatin/alginate matrix modified with hydroxyapatite were obtained, and the relationship between modifiers and substrate properties was evaluated. They differed in the type of second modifier used, which was hydrated MgCl2 in two proportions, ZnO, and nanohydroxyapatite. The samples were obtained by freeze-drying using two-stage freezing. Based on microstructural observations combined with X-ray microanalysis, the microstructure of the samples and the elemental content were assessed. Permeability and mechanical tests were also performed. The scaffolds exhibited a network of interconnected pores and complex microarchitecture, with lower porosity at the surface (15±7 to 29±6%) and higher at the center (67±8 to 75±8%). The additives had varying effects on the pore size and permeability of the samples. ZnO yielded the most permeable scaffolds (5.92×10-11 m2), whereas nanohydroxyapatite yielded the scaffold with the lowest permeability (1.18×10-11 m2), values within the range reported for trabecular bone. The magnesium content had no statistically significant effect on the permeability. The best mechanical parameters were obtained for ZnO samples and those containing hydrated MgCl2. The scaffolds properties meet the criteria for filling osteochondral defects. The developed scaffolds follow a biomimetic approach in terms of hierarchical microarchitecture and mechanical parameters, as well as the chemical composition. The obtained composite materials have potential as biomimetic scaffolds for regeneration of osteochondral defects.

Opis
Contains